To answer your question I will use dimensional analysis, which is used by cancelling out the units. I will also use the balanced equation provided as a conversion factor.
A) First start out with the 0.300 mol of C6H12O6...
0.300 mol C6H12O6 * (2 mol CO2 / 1 mol C6H12O6) = 0.600 mol CO2
*The significant figures (sig figs) at still three, the 2 is a conversion counting number and does not count*
B) First change 2.00 g of C2H5OH to moles of C2H5OH...
The molecular mass of C2H5OH is...
2(12.01 g/mol) + 5(1.008 g/mol) + 16.00 g/mol + 1.008 g/mol = 46.07 g/mol
This can be used as a conversion factor to change grams to moles.
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) = 0.0434 mol C2H5OH
Second, you can change the moles of C2H5OH to moles of C6H12O6..
0.0434 mol C2H5OH * (1 mol C6H12O6 / 2 mol C6H12O6) = 0.0217 mol C6H12O6
Third, change moles of C6H12O6 to grams...
MM = 6(12.01 g/mol) + 12(1.008 g/mol) + 6(16.00 g/mol) = 180.16 g/mol
0.0217 mol C6H12O6 * (180.16 g C6H12O6 / 1 mol C6H12O6) = 3.91 g C6H12O6
C) Now I am going to put it all into one long dimensional analysis problem.
MM of CO2 = 44.01 g/mol
MM of C2H5OH = 46.07 g/mol
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) * (2 mol CO2 / 2 mol C2H5OH) * (44.01 g CO2 / 1 mol CO2) = 1.91 g CO2
I hope this helped and I am sorry that I talked to much, I just didn't want to miss anything!
Answer
The Density of a substance can change if its location changes.
Explanation
All the statements are TRUE except
The Density of a substance can change if its location changes.
This is because density is an intensive property, that is regardless of the object's shape, size, or quantity, the density of that substance will always be the same. Even if you cut the object into a million pieces, they would still each have the same density.
Therefore, the statement that is FALSE is
The Density of a substance can change if its location changes.
Answer:
265 mL is the new volume for the gas
Explanation:
We decompose the Ideal Gases Law in order to find the answer of this question: P . V = n . R . T
We can propose the formula for the 2 situations, where n remains constant.
R refers to 0.082 L.atm/mol.K which is physic constant.
We convert the temperature to Absolute value:
67.5°C + 273 = 340.5 K
80°C + 273 = 353 K
We convert the volume to L → 242.2 mL . 1 L/1000 mL = 0.2422 L
We convert the pressure values to atm:
882 Torr . 1 atm/ 760 Torr = 1.16 atm
840 Torr . 1atm / 760 Torr = 1.10 atm
P₁. V₁ / T₁ = P₂ . V₂ / T₂ → Let's replace data:
1.16 atm . 0.2422L / 340.5K = 1.10 atm . V₂ / 353 K
(1.16 atm . 0.2422L / 340.5K) . 353K = 1.10 atm . V₂
V₂ = 0.291 L.atm / 1.10 atm → 0.2647 L ≅ 265 mL
Answer : The mass of the water molecule is 4.5 times greater than the mass of the helium atom.
Explanation :
Assumption : The number of water molecules is equal to the number of helium atoms
Given : The mass of water = 4.5 × The mass of helium ........(1)
The mass of Water = Mass of 1 water molecule × Number of water molecule
The mass of Helium = Mass of 1 helium atom × Number of helium atom
Now these two masses expression put in the equation (1), we get
Mass of 1 water molecule × Number of water molecule = 4.5 × Mass of 1 helium atom × Number of helium atom
As per assumption, the number of water molecules is equal to the number of helium atoms. The relation between the mass of water molecule and the mass of helium atom is,
Mass of water molecule = 4.5 × Mass of helium atom
Therefore, the mass of the water molecule is 4.5 times greater than the mass of the helium atom.
Answer:
Most liking the puck will go flying because of the force of the hockey stick.