Answer:
(a) 
(b) 
Explanation:
Given data
The angular velocity of two cylinders ω=257 rad/s
The mass of the two cylinders m=2.88 kg
The radius of small cylinder r₁=0.319 m
The radius of larger cylinder r₂=0.605 m
For Part (a)
The rotational kinetic energy of the cylinder is given by:

Where I is rotational of inertia of solid cylinder about its central axis.
So

Substitute the given values
So

For Part (b)

Substitute the given values

Answer:
Ty has two pet mice. One mouse has the gene for black fur color and the other mouse has the gene for white fur color. The female mouse is pregnant now, and Ty wonders what color or colors the baby mice will be. Read each offspring description phrase below and select the correct pattern of dominance for each.
___ all white fur offspring, white fur in this case is dominant
___ all gray fur offspring, this is incomplete dominant.
___ all black fur offspring, this is black fur dominantice
___ all black and white offspring, this is codominance .
Explanation:
Incomplete dominance: Incomplete dominance is when a dominant allele, or form of a gene, does not completely mask the effects of a recessive allele, and the organism's resulting physical appearance shows a blending of both alleles. It is also called semi-dominance or partial dominance.
Codominance: Codominance is a relationship between two versions of a gene. Individuals receive one version of a gene, called an allele, from each parent. If the alleles are different, the dominant allele usually will be expressed, while the effect of the other allele, called recessive, is masked.
Explanation:
It is given that,
Mass of the football player, m = 92 kg
Velocity of player, v = 5 m/s
Time taken, t = 10 s
(1) We need to find the original kinetic energy of the player. It is given by :


k = 1150 J
In two significant figure, 
(2) We know that work done is equal to the change in kinetic energy. Work done per unit time is called power of the player. We need to find the average power required to stop him. So, his final velocity v = 0
i.e. 

P = 115 watts
In two significant figures, 
Hence, this is the required solution.
Answer:
It comes out the positive side of the battery and goes in to the negative side of the battery
Explanation:
There are already electrons in wires in a circuit before you add the battery. By adding the battery, you're giving the electrons the energy it needs to move along the circuit.
In a series circuit, the circuit is one continuous loop so there is only one path for the electrons to go - out of the positive side of the battery and around the circuit then goes back into the negative side of the battery.
However, with a parallel circuit, there are two or more ways the electrons can go so they take the path of least resistance. The electrons still go out the positive side of a battery but along the circuit, the electrons will go through the path of least resistance ( I tend to think of it like a net with holes in it - the lower the resistance the bigger the holes for the electrons to go through so more can fit in a set amount of time ) but the electrons still go out of the positive side and in through the negative