Divide 14 by 6 and there is your answer with the unit of m
<span>they are travelling at right angles to each other.
At any given instant they form a right triangle with their starting point
</span>South bound <span>= x [mi/h]
</span> East bound <span> = x+1 [mi/h]
after five hours they will be
d=5x
and
d=5(x+1)
miles away from the starting point
(5x)^2+(5(x+1))^2=625
25x^2+(5x+5)^2=625
25x^2+25x^2+50x+25=625
50</span>x^2+50x-600=0
<span> x^2+ x - 12=0
(x+4)(x-3)=0
take the postive value
x= 3 mph the speed of south bound
4mph east bound </span>
Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.
Sun fives off both of them