1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
12

A worker wants to load a 12 kg crate into a truck by sliding the crate up a straight ramp which is 2.5 m long and which makes an

angle of 30 degrees with the horizontal. The worker believes that he can get the crate to the very top of the ramp by launching it at 5 m/s at the bottom and letting go. But friction is not neglible; the crate slides 1.6 m upthe ramp, stops, and slides back down.
Required:
a. Assuming that the friction force actingon the crate is constant, find its magnitude.
b. How fast is teh crate moving when it reachesthe bottom of the ramp?
Physics
1 answer:
olga2289 [7]3 years ago
7 0

Answer:

a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

Explanation:

a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:

U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{1}, K_{2} - Initial and final translational kinetic energy, measured in joules.

W_{fr} - Work losses due to friction, measured in joules.

By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

Where:

m - Mass of the crate, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y_{1}, y_{2} - Initial and final height of the crate, measured in meters.

v_{1}, v_{2} - Initial and final speeds of the crate, measured in meters per second.

\mu_{k} - Kinetic coefficient of friction, dimensionless.

\theta - Ramp inclination, measured in sexagesimal degrees.

The equation is now simplified and the coefficient of friction is consequently cleared:

y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta

\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right]

The final height of the crate is:

y_{2} = (1.6\,m)\cdot \sin 30^{\circ}

y_{2} = 0.8\,m

If \theta = 30^{\circ}, y_{1} = 0\,m, y_{2} = 0.8\,m, g = 9.807\,\frac{m}{s^{2}}, v_{1} = 5\,\frac{m}{s} and v_{2} = 0\,\frac{m}{s}, the coefficient of friction is:

\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}

\mu_{k} \approx 0.548

Then, the magnitude of the friction force is:

f =\mu_{k}\cdot m\cdot g \cdot \cos \theta

If \mu_{k} \approx 0.548, m = 12\,kg, g = 9.807\,\frac{m}{s^{2}} and \theta = 30^{\circ}, the magnitude of the force of friction is:

f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}

f = 55.851\,N

The magnitude of the force of friction is 55.851 newtons.

b) The energy equation of the situation is:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta

Now, the final speed is cleared:

y_{1}-y_{2}+ \frac{1}{2\cdot g}\cdot v_{1}^{2} -\mu_{k}\cdot \cos \theta=  \frac{1}{2\cdot g}\cdot v_{2}^{2}

2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}

v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}

Given that g = 9.807\,\frac{m}{s^{2}}, y_{1} = 0.8\,m, y_{2} = 0\,m, \mu_{k} \approx 0.548, \theta = 30^{\circ} and v_{1} = 0\,\frac{m}{s}, the speed of the crate at the bottom of the ramp is:

v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}

v_{2}\approx 2.526\,\frac{m}{s}

The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

You might be interested in
There are infinite black and white dots on a plane. Prove that the distance between one black dot and one white dot is one unit.
OlgaM077 [116]

Answer:this is confusing and what subject is this

Explanation:

6 0
3 years ago
Read 2 more answers
What are some ways houses along the coastlines can protect themselves from storm surges?
BARSIC [14]
Build walls around the coast
8 0
3 years ago
Why a surface that always have a perpendicular is an equipotential
Mariulka [41]
Answer:

An equipotential surface is circular in the two-dimensional. Since the electric field lines are directed radially away from the charge, hence they are opposite to the equipotential lines. Therefore, the electric field is perpendicular to the equipotential surface.
6 0
2 years ago
2. True or False Every sample of a pure substance has exactly the same composition
Marrrta [24]

Answer:

the correct answer is False

Explanation:

i hope its right

5 0
3 years ago
Acceleration is a vector quantity.<br> O<br> O<br> A. True<br> B. False
PtichkaEL [24]
True ( I think ) ............................
3 0
3 years ago
Read 2 more answers
Other questions:
  • Please HELP!!
    11·1 answer
  • How many chirps will a snowy tree cricket give is 21 seconds at a temperature of 22 degree celcius
    6·1 answer
  • Starting friction is the force caused by tiny bonds forming between two surfaces.
    7·1 answer
  • Objects with greater mass have a weaker force of gravity between them.<br><br> True<br> False
    12·1 answer
  • How would you describe the two projectors used to screen a three-dimensional movie?
    14·2 answers
  • How volcanoes are made summary
    15·1 answer
  • a wave is described by where x is in meters, y is in centimeters and t is in seconds. The angular frequency is
    11·1 answer
  • Yuck! This statement represents which of the folllwoing functions of language
    7·1 answer
  • Define momentum in term of mass and velocity​
    15·1 answer
  • A bus travelled 160 km in 4 hours, another bus travelled 175 km in 5 hours, which bus moved faster? ​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!