1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
12

A worker wants to load a 12 kg crate into a truck by sliding the crate up a straight ramp which is 2.5 m long and which makes an

angle of 30 degrees with the horizontal. The worker believes that he can get the crate to the very top of the ramp by launching it at 5 m/s at the bottom and letting go. But friction is not neglible; the crate slides 1.6 m upthe ramp, stops, and slides back down.
Required:
a. Assuming that the friction force actingon the crate is constant, find its magnitude.
b. How fast is teh crate moving when it reachesthe bottom of the ramp?
Physics
1 answer:
olga2289 [7]3 years ago
7 0

Answer:

a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

Explanation:

a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:

U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{1}, K_{2} - Initial and final translational kinetic energy, measured in joules.

W_{fr} - Work losses due to friction, measured in joules.

By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

Where:

m - Mass of the crate, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y_{1}, y_{2} - Initial and final height of the crate, measured in meters.

v_{1}, v_{2} - Initial and final speeds of the crate, measured in meters per second.

\mu_{k} - Kinetic coefficient of friction, dimensionless.

\theta - Ramp inclination, measured in sexagesimal degrees.

The equation is now simplified and the coefficient of friction is consequently cleared:

y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta

\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right]

The final height of the crate is:

y_{2} = (1.6\,m)\cdot \sin 30^{\circ}

y_{2} = 0.8\,m

If \theta = 30^{\circ}, y_{1} = 0\,m, y_{2} = 0.8\,m, g = 9.807\,\frac{m}{s^{2}}, v_{1} = 5\,\frac{m}{s} and v_{2} = 0\,\frac{m}{s}, the coefficient of friction is:

\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}

\mu_{k} \approx 0.548

Then, the magnitude of the friction force is:

f =\mu_{k}\cdot m\cdot g \cdot \cos \theta

If \mu_{k} \approx 0.548, m = 12\,kg, g = 9.807\,\frac{m}{s^{2}} and \theta = 30^{\circ}, the magnitude of the force of friction is:

f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}

f = 55.851\,N

The magnitude of the force of friction is 55.851 newtons.

b) The energy equation of the situation is:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta

Now, the final speed is cleared:

y_{1}-y_{2}+ \frac{1}{2\cdot g}\cdot v_{1}^{2} -\mu_{k}\cdot \cos \theta=  \frac{1}{2\cdot g}\cdot v_{2}^{2}

2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}

v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}

Given that g = 9.807\,\frac{m}{s^{2}}, y_{1} = 0.8\,m, y_{2} = 0\,m, \mu_{k} \approx 0.548, \theta = 30^{\circ} and v_{1} = 0\,\frac{m}{s}, the speed of the crate at the bottom of the ramp is:

v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}

v_{2}\approx 2.526\,\frac{m}{s}

The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

You might be interested in
What you filling your heart with <br>oxygen and blood
svlad2 [7]

Answer:

Explanation:

                    The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body.

        #I AM ILLITERATE

5 0
3 years ago
Read 2 more answers
Two teams are playing tug of war. Team A pulls to the right with a force of 450 N. Team B pulls to the left with a force of 415
motikmotik

Answer:

35 N to the right.

Explanation:

450 is going to the right so you subtract what is going against it. Which gives you 35. And because 450 is bigger than 415, it'll be going to the right.

6 0
3 years ago
The law of conservation of momentum states that...
Brums [2.3K]

Answer:

The momentum before is equal to the momentum after

Explanation:

It is equal and should level out in an equation.

4 0
3 years ago
imagine that a brown horse and a white horse cross of producing Offspring who Coke is made of some brown hairs and some white ha
Zolol [24]
This pattern would be a codominant pattern.
4 0
3 years ago
Read 2 more answers
How much force is needed to accelerate a 1000-kg car at a rate of 3 m/s squared
Burka [1]

Answer:

3000 newton force is required

Explanation:

F = ma

F= 1000 kgs x 3 m/s^ 2

F=3000(kgs x m/s^2)

F=3000 newton

8 0
3 years ago
Other questions:
  • Marcus used a toaster oven in the morning.He notices that when he plug it in and turn it on the coils inside begin to glow red w
    13·1 answer
  • All objects in the universe radiate some form of energy.<br> a. True<br> b. False
    9·2 answers
  • assuming that there are no outside forces, what will happen if two neutral atoms are placed 1 M apart in a vacuum. a)the atoms w
    13·1 answer
  • 1.(16 pts.) Find the volume of the solid obtained by revolving the region enclosed by y = xex , y = 0 and x = 1 about the x-axis
    15·1 answer
  • Most ionic bonds form when electrons from____.
    15·2 answers
  • How would I explain part a?
    10·1 answer
  • Why, based on what you learned in the module, might an institution like a university choose to use cast, steel-reinforced concre
    11·1 answer
  • What should Isla write in the areas marked A, B, and C?
    15·2 answers
  • Different between weight and mass​
    15·2 answers
  • could you help with question 5. Your solutions to the word problems in volving Newton's Laws should have the following features:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!