Answer:
a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.
Explanation:
a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:
![U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}](https://tex.z-dn.net/?f=U_%7Bg%2C1%7D%2BK_%7B1%7D%20%3D%20U_%7Bg%2C2%7D%2BK_%7B2%7D%2B%20W_%7Bfr%7D)
Where:
,
- Initial and final gravitational potential energy, measured in joules.
,
- Initial and final translational kinetic energy, measured in joules.
- Work losses due to friction, measured in joules.
By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:
![m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta](https://tex.z-dn.net/?f=m%5Ccdot%20g%20%5Ccdot%20y_%7B1%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%5Ccdot%20v_%7B1%7D%5E%7B2%7D%20%3D%20%20m%5Ccdot%20g%20%5Ccdot%20y_%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%5Ccdot%20v_%7B2%7D%5E%7B2%7D%20%2B%20%5Cmu_%7Bk%7D%5Ccdot%20m%20%5Ccdot%20g%20%5Ccdot%20%5Ccos%20%5Ctheta)
Where:
- Mass of the crate, measured in kilograms.
- Gravitational acceleration, measured in meters per square second.
,
- Initial and final height of the crate, measured in meters.
,
- Initial and final speeds of the crate, measured in meters per second.
- Kinetic coefficient of friction, dimensionless.
- Ramp inclination, measured in sexagesimal degrees.
The equation is now simplified and the coefficient of friction is consequently cleared:
![y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta](https://tex.z-dn.net/?f=y_%7B1%7D-y_%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5Ccdot%20g%7D%5Ccdot%20%28v_%7B1%7D%5E%7B2%7D-v_%7B2%7D%5E%7B2%7D%29%20%3D%20%5Cmu_%7Bk%7D%5Ccdot%20%5Ccos%20%5Ctheta)
![\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right]](https://tex.z-dn.net/?f=%5Cmu_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Ccos%20%5Ctheta%7D%20%5Ccdot%20%5Cleft%5By_%7B1%7D-y_%7B2%7D%2B%5Cfrac%7B1%7D%7B2%5Ccdot%20g%7D%5Ccdot%20%28v_%7B1%7D%5E%7B2%7D-v_%7B2%7D%5E%7B2%7D%29%20%5Cright%5D)
The final height of the crate is:
![y_{2} = (1.6\,m)\cdot \sin 30^{\circ}](https://tex.z-dn.net/?f=y_%7B2%7D%20%3D%20%281.6%5C%2Cm%29%5Ccdot%20%5Csin%2030%5E%7B%5Ccirc%7D)
![y_{2} = 0.8\,m](https://tex.z-dn.net/?f=y_%7B2%7D%20%3D%200.8%5C%2Cm)
If
,
,
,
,
and
, the coefficient of friction is:
![\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}](https://tex.z-dn.net/?f=%5Cmu_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Ccos%2030%5E%7B%5Ccirc%7D%7D%5Ccdot%20%5Cleft%5C%7B0%5C%2Cm-0.8%5C%2Cm%2B%5Cfrac%7B1%7D%7B2%5Ccdot%20%5Cleft%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%7D%5Ccdot%20%5Cleft%5B%5Cleft%285%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%20%5Cright%5C%7D)
Then, the magnitude of the friction force is:
If
,
,
and
, the magnitude of the force of friction is:
![f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}](https://tex.z-dn.net/?f=f%20%3D%20%280.548%29%5Ccdot%20%2812%5C%2Ckg%29%5Ccdot%20%5Cleft%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%5Ccos%2030%5E%7B%5Ccirc%7D)
![f = 55.851\,N](https://tex.z-dn.net/?f=f%20%3D%2055.851%5C%2CN)
The magnitude of the force of friction is 55.851 newtons.
b) The energy equation of the situation is:
![m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta](https://tex.z-dn.net/?f=m%5Ccdot%20g%20%5Ccdot%20y_%7B1%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%5Ccdot%20v_%7B1%7D%5E%7B2%7D%20%3D%20%20m%5Ccdot%20g%20%5Ccdot%20y_%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20m%5Ccdot%20v_%7B2%7D%5E%7B2%7D%20%2B%20%5Cmu_%7Bk%7D%5Ccdot%20m%20%5Ccdot%20g%20%5Ccdot%20%5Ccos%20%5Ctheta)
![y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta](https://tex.z-dn.net/?f=y_%7B1%7D%2B%5Cfrac%7B1%7D%7B2%5Ccdot%20g%7D%5Ccdot%20v_%7B1%7D%5E%7B2%7D%20%3Dy_%7B2%7D%20%2B%20%5Cfrac%7B1%7D%7B2%5Ccdot%20g%7D%5Ccdot%20v_%7B2%7D%5E%7B2%7D%20%2B%20%5Cmu_%7Bk%7D%5Ccdot%20%5Ccos%20%5Ctheta)
Now, the final speed is cleared:
![2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}](https://tex.z-dn.net/?f=2%5Ccdot%20g%20%5Ccdot%20%28y_%7B1%7D-y_%7B2%7D-%5Cmu_%7Bk%7D%5Ccdot%20%5Ccos%20%5Ctheta%29%20%2B%20v_%7B1%7D%5E%7B2%7D%20%3D%20v_%7B2%7D%5E%7B2%7D)
![v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}](https://tex.z-dn.net/?f=v_%7B2%7D%20%3D%20%5Csqrt%7B2%5Ccdot%20g%20%5Ccdot%20%28y_%7B1%7D-y_%7B2%7D-%5Cmu_%7Bk%7D%5Ccdot%20%5Ccos%20%5Ctheta%29%2Bv_%7B1%7D%5E%7B2%7D%7D)
Given that
,
,
,
,
and
, the speed of the crate at the bottom of the ramp is:
![v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}](https://tex.z-dn.net/?f=v_%7B2%7D%3D%5Csqrt%7B2%5Ccdot%20%5Cleft%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%5B0.8%5C%2Cm-0%5C%2Cm-%280.548%29%5Ccdot%20%5Ccos%2030%5E%7B%5Ccirc%7D%5D%2B%5Cleft%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%7D)
The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.