1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
2 years ago
12

A worker wants to load a 12 kg crate into a truck by sliding the crate up a straight ramp which is 2.5 m long and which makes an

angle of 30 degrees with the horizontal. The worker believes that he can get the crate to the very top of the ramp by launching it at 5 m/s at the bottom and letting go. But friction is not neglible; the crate slides 1.6 m upthe ramp, stops, and slides back down.
Required:
a. Assuming that the friction force actingon the crate is constant, find its magnitude.
b. How fast is teh crate moving when it reachesthe bottom of the ramp?
Physics
1 answer:
olga2289 [7]2 years ago
7 0

Answer:

a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

Explanation:

a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:

U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{1}, K_{2} - Initial and final translational kinetic energy, measured in joules.

W_{fr} - Work losses due to friction, measured in joules.

By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

Where:

m - Mass of the crate, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y_{1}, y_{2} - Initial and final height of the crate, measured in meters.

v_{1}, v_{2} - Initial and final speeds of the crate, measured in meters per second.

\mu_{k} - Kinetic coefficient of friction, dimensionless.

\theta - Ramp inclination, measured in sexagesimal degrees.

The equation is now simplified and the coefficient of friction is consequently cleared:

y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta

\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right]

The final height of the crate is:

y_{2} = (1.6\,m)\cdot \sin 30^{\circ}

y_{2} = 0.8\,m

If \theta = 30^{\circ}, y_{1} = 0\,m, y_{2} = 0.8\,m, g = 9.807\,\frac{m}{s^{2}}, v_{1} = 5\,\frac{m}{s} and v_{2} = 0\,\frac{m}{s}, the coefficient of friction is:

\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}

\mu_{k} \approx 0.548

Then, the magnitude of the friction force is:

f =\mu_{k}\cdot m\cdot g \cdot \cos \theta

If \mu_{k} \approx 0.548, m = 12\,kg, g = 9.807\,\frac{m}{s^{2}} and \theta = 30^{\circ}, the magnitude of the force of friction is:

f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}

f = 55.851\,N

The magnitude of the force of friction is 55.851 newtons.

b) The energy equation of the situation is:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta

Now, the final speed is cleared:

y_{1}-y_{2}+ \frac{1}{2\cdot g}\cdot v_{1}^{2} -\mu_{k}\cdot \cos \theta=  \frac{1}{2\cdot g}\cdot v_{2}^{2}

2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}

v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}

Given that g = 9.807\,\frac{m}{s^{2}}, y_{1} = 0.8\,m, y_{2} = 0\,m, \mu_{k} \approx 0.548, \theta = 30^{\circ} and v_{1} = 0\,\frac{m}{s}, the speed of the crate at the bottom of the ramp is:

v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}

v_{2}\approx 2.526\,\frac{m}{s}

The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

You might be interested in
Tonya is thinking about the topic presented in the text, "Do opposites really attract?" Which of her thoughts is an example of c
tigry1 [53]

tanya is dumb  j j j j j j j j j jj j j j

6 0
3 years ago
Help pleasee
agasfer [191]

Answer:

i/f = i/o + i/i       f = focal, o = object, i = image

1 / i = 1 / f - 1 / o  =    (o - f) / o f

i = o * f / ( o - f)      image distance

i = 12.5 * 22 / (12.5 - 22) = -28.9 cm

Image is real

Image is 28.9 cm to left of lens

M = - i / o = = 28.9 / 12.5 = 2.3     magnification (convex lens)

8 0
2 years ago
Semi-trailer trucks have an odometer on one hub of a trailer wheel. The hub is weighted so that it does not rotate, but it conta
shtirl [24]

Answer:

1020 km

Explanation:

A complete rotation of the wheel equals a distance of 1 circumference.

The circumference is

C = \pi d

where <em>d</em> is the diameter of the wheel.

300,000 rotations = 300000\pi d = 300000\times\pi\times1.08\text{ m} = 1017876.0\ldots\text{ m}

In kilometers, this is = 1017876/1000 km = 1020 km

6 0
3 years ago
An object is accelerating if there is a change in speed and/or ________.
Alborosie

Acceleration means any change in the speed or direction of motion.
8 0
3 years ago
Read 2 more answers
If the distance between two objects is decreased to 1 10 of the original distance, how will it change the force of attraction be
aleksandr82 [10.1K]

(A) It will 100 times larger than the original force.

6 0
3 years ago
Other questions:
  • What is the energy of a photon of light with a wavelength of 3.10 × 10−7 m?
    5·1 answer
  • When an object experiences uniform circular motion the direction of the net force is?
    14·1 answer
  • When a substance has changed into something new or different so that the original substance is gone, as in digestion, radioactiv
    9·2 answers
  • After all that you have learned in this unit, construct a pamphlet (brochure) in Microsoft Publisher helping new freshman to enc
    13·1 answer
  • Which of the following statement best define tides?
    9·2 answers
  • Sometimes it is very hard to hear in a gymnasium because of echoes . How can you changed it
    10·1 answer
  • You want to calculate the density of a marble what is one piece of data that you need A the weight B the volume C how fast the m
    15·2 answers
  • An Earth satellite needs to have its orbit changed so the new orbit will be twice as far from the center of Earth as the origina
    7·1 answer
  • An airplane flies for 1.25 hours with a constant speed of 1080 km/hr and then for another 2.5 hours with a constant speed of 984
    14·2 answers
  • The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed?(a) 16(b
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!