1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
3 years ago
12

A worker wants to load a 12 kg crate into a truck by sliding the crate up a straight ramp which is 2.5 m long and which makes an

angle of 30 degrees with the horizontal. The worker believes that he can get the crate to the very top of the ramp by launching it at 5 m/s at the bottom and letting go. But friction is not neglible; the crate slides 1.6 m upthe ramp, stops, and slides back down.
Required:
a. Assuming that the friction force actingon the crate is constant, find its magnitude.
b. How fast is teh crate moving when it reachesthe bottom of the ramp?
Physics
1 answer:
olga2289 [7]3 years ago
7 0

Answer:

a) The magnitude of the friction force is 55.851 newtons, b) The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

Explanation:

a) This situation can be modelled by the Principle of Energy Conservation and the Work-Energy Theorem, where friction represents the only non-conservative force exerting on the crate in motion. Let consider the bottom of the straight ramp as the zero point. The energy equation for the crate is:

U_{g,1}+K_{1} = U_{g,2}+K_{2}+ W_{fr}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{1}, K_{2} - Initial and final translational kinetic energy, measured in joules.

W_{fr} - Work losses due to friction, measured in joules.

By applying the defintions of translational kinetic and gravitational potential energies and work, this expression is now expanded:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

Where:

m - Mass of the crate, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

y_{1}, y_{2} - Initial and final height of the crate, measured in meters.

v_{1}, v_{2} - Initial and final speeds of the crate, measured in meters per second.

\mu_{k} - Kinetic coefficient of friction, dimensionless.

\theta - Ramp inclination, measured in sexagesimal degrees.

The equation is now simplified and the coefficient of friction is consequently cleared:

y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot \cos \theta

\mu_{k} = \frac{1}{\cos \theta} \cdot \left[y_{1}-y_{2}+\frac{1}{2\cdot g}\cdot (v_{1}^{2}-v_{2}^{2}) \right]

The final height of the crate is:

y_{2} = (1.6\,m)\cdot \sin 30^{\circ}

y_{2} = 0.8\,m

If \theta = 30^{\circ}, y_{1} = 0\,m, y_{2} = 0.8\,m, g = 9.807\,\frac{m}{s^{2}}, v_{1} = 5\,\frac{m}{s} and v_{2} = 0\,\frac{m}{s}, the coefficient of friction is:

\mu_{k} = \frac{1}{\cos 30^{\circ}}\cdot \left\{0\,m-0.8\,m+\frac{1}{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)}\cdot \left[\left(5\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}\right] \right\}

\mu_{k} \approx 0.548

Then, the magnitude of the friction force is:

f =\mu_{k}\cdot m\cdot g \cdot \cos \theta

If \mu_{k} \approx 0.548, m = 12\,kg, g = 9.807\,\frac{m}{s^{2}} and \theta = 30^{\circ}, the magnitude of the force of friction is:

f = (0.548)\cdot (12\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot \cos 30^{\circ}

f = 55.851\,N

The magnitude of the force of friction is 55.851 newtons.

b) The energy equation of the situation is:

m\cdot g \cdot y_{1} + \frac{1}{2}\cdot m\cdot v_{1}^{2} =  m\cdot g \cdot y_{2} + \frac{1}{2}\cdot m\cdot v_{2}^{2} + \mu_{k}\cdot m \cdot g \cdot \cos \theta

y_{1}+\frac{1}{2\cdot g}\cdot v_{1}^{2} =y_{2} + \frac{1}{2\cdot g}\cdot v_{2}^{2} + \mu_{k}\cdot \cos \theta

Now, the final speed is cleared:

y_{1}-y_{2}+ \frac{1}{2\cdot g}\cdot v_{1}^{2} -\mu_{k}\cdot \cos \theta=  \frac{1}{2\cdot g}\cdot v_{2}^{2}

2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta) + v_{1}^{2} = v_{2}^{2}

v_{2} = \sqrt{2\cdot g \cdot (y_{1}-y_{2}-\mu_{k}\cdot \cos \theta)+v_{1}^{2}}

Given that g = 9.807\,\frac{m}{s^{2}}, y_{1} = 0.8\,m, y_{2} = 0\,m, \mu_{k} \approx 0.548, \theta = 30^{\circ} and v_{1} = 0\,\frac{m}{s}, the speed of the crate at the bottom of the ramp is:

v_{2}=\sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot [0.8\,m-0\,m-(0.548)\cdot \cos 30^{\circ}]+\left(0\,\frac{m}{s} \right)^{2}}

v_{2}\approx 2.526\,\frac{m}{s}

The speed of the crate when it reaches the bottom of the ramp is 2.526 meters per second.

You might be interested in
Which direction does air circulate into low pressure zones in the northern and southern hemispheres
photoshop1234 [79]
Warm air goes up cool air goes down
5 0
3 years ago
Read 2 more answers
What are facts about balloons?
Nataly_w [17]
The first rubber balloon was made by Professor Michael Faraday in 1824, out of two sheets of rubber whose edges were pressed together. Hot air balloonwas the balloon to make the first recorded manned flight. It was made by the Montgolfier brothers and launched on 21 November 1783.
3 0
3 years ago
Read 2 more answers
Which type of exercise is weightlifting?
MatroZZZ [7]

The answer is option B "anaerobic." Weightlifting deals with stress to the muscles when lifting weights and due time the muscles will begin to adapt and get stronger. Other examples of anaerobic exercise are things like: weight training, sprinting, cycling, and jumping anything that has short exertion, and high-intensity movement is an anaerobic exercise.

Hope this helps!

Nonportrit

5 0
3 years ago
Read 2 more answers
What is the half-life of an isotope that decays to 25% of its original activity in 70.8 hours?
loris [4]
Are there any options?
8 0
3 years ago
Which statement about nuclear fusion is correct? A. Two hydrogen electrons become protons during fusion. B. Helium nuclei can fu
velikii [3]

Answer:

A is the answer

Explanation:

Yes, Two hydrogen electrons become protons during fusion.

By far, the most common fusion reaction in nature combines two hydrogen atoms to make a helium atom.

8 0
2 years ago
Read 2 more answers
Other questions:
  • A 3.92 cm tall object is placed in 31.3 cm in front of a convex mirror. The focal
    12·1 answer
  • A ball at rest starts rolling down a hill with a constant acceleration of 3.2 meters/second. What is the final velocity of the b
    15·1 answer
  • If you have 500 g of water at 25oc and wish to heat it to 74o c, what is the specific heat of water
    14·1 answer
  • You're driving your new sports car at 85 mph over the top of a hill that has a radius of curvature of 525 m.
    8·1 answer
  • Preventing projects​
    8·1 answer
  • ________ Layer of the atmosphere where jets fly through and contains ozone layer
    10·1 answer
  • Two spheres of the same size and mass roll down an incline. Sphere A is hollow and Sphere B is solid with uniform density. Which
    15·1 answer
  • An isolated conducting sphere has a 16 cm radius. One wire carries a current of 1.0000020 A into it. Another wire carries a curr
    13·1 answer
  • A rectangular solid is 5m long, 2m high and 4m wide. The mass of the solid is 300g. Find the density of this solid.​
    15·1 answer
  • A woman pulls a 7.87 kg suitcase,
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!