Answer:
Explanation:
mass, m = 1 kg
Position (2, 3 ) m
height, h = 2 m
acceleration due to gravity, g = 9.8 m/s^2
Here, no force is acting in horizontal direction, the force of gravity is acting in vertical direction, so the work done by the gravitational force is to be calculated.
Force mass x acceleration due to gravity
F = 1 x 9.8 = 9.8 N
Work = force x displacement x CosФ
Where, Ф be the angle between force vector and the displacement vector.
Here the value of Ф is 180° as the force acting vertically downward and the displacement is upward
So, W = 9.8 x 2 x Cos 180°
W = - 19.6 J
Thus, option (A) is correct.
That is true. its more than twice as heavier
Answer:
B
Explanation:
the way to get b you have divion each other
Answer:
Explanation:
We shall apply conservation of momentum law in vector form to solve the problem .
Initial momentum = 0
momentum of 12 g piece
= .012 x 37 i since it moves along x axis .
= .444 i
momentum of 22 g
= .022 x 34 j
= .748 j
Let momentum of third piece = p
total momentum
= p + .444 i + .748 j
so
applying conservation law of momentum
p + .444 i + .748 j = 0
p = - .444 i - .748 j
magnitude of p
= √ ( .444² + .748² )
= .87 kg m /s
mass of third piece = 58 - ( 12 + 22 )
= 24 g = .024 kg
if v be its velocity
.024 v = .87
v = 36.25 m / s .
Answer:
176.58 m
Explanation:
t = Time taken = 6 seconds
u = Initial velocity = 0
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The object travels 176.58 m from the cliff in 6 seconds.