Since you didn't provide how tall the Monument was, I took the liberty to find it and it is 555 feet tall. So to convert to meters we must divide 555 by 3.28 or multiply it by 0.3048 (this is the method I used).
555 x 0.3048 = 169.164 meters
To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
Answer: im not gonna give i to you just do 15+15=_+ 5.6+6.4 easy
Explanation: i took the test and got a 100%
<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C