Explanation:
The dipoles in CO are in opposite directions so they cancel each other out, although CO₂ has polar bonds, it is a nonpolar molecule. Therefore, the only intermolecular forces are London dispersion forces. Water (H2O) has hydrogen bond present which is a polar bond which has a high intermolecular force.
Water which has high intermolecular force will require more energy that is a higher temperature to overcome these attractions and are pulled together tightly to form a solid at higher temperatures, so their freezing point is higher.
As the temperature of a liquid decreases, the average kinetic energy of the molecules decreases and they move more slowly.
CO with lower intermolecular forces will not solidify until the temperature is lowered further.
<em>Calculate the pH of the following substances formed during a volcanic eruption:
</em>
<em>• Acid rain if the [H +] is 1.9 x 10-5
</em>
<em>• Sulfurous acid if [H +] = 0.10
</em>
<em>• Nitric acid if [H +] = 0.11</em>
<em />
<h3>Further explanation </h3>
pH is the degree of acidity of a solution that depends on the concentration of H⁺ ions. The greater the value the more acidic the solution and the smaller the pH.
pH = - log [H⁺]
![\tt pH=-log[1.9\times 10^{-5}]\\\\pH=5-log1.9\\\\pH=4.72](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B1.9%5Ctimes%2010%5E%7B-5%7D%5D%5C%5C%5C%5CpH%3D5-log1.9%5C%5C%5C%5CpH%3D4.72)
![\tt pH=-log[10^{-1}]\\\\pH=1](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B10%5E%7B-1%7D%5D%5C%5C%5C%5CpH%3D1)
![\tt pH=-log[11\times 10^{-2}]\\\\pH=2-log~11=0.959](https://tex.z-dn.net/?f=%5Ctt%20pH%3D-log%5B11%5Ctimes%2010%5E%7B-2%7D%5D%5C%5C%5C%5CpH%3D2-log~11%3D0.959)
The partial pressure is the amount of linguistic compound there is which makes the lagitude of the element 64.663
Had to look for the options and here is my answer.
When we say that a redox reaction is spontaneous, this would mean that there is a formation of positive voltage <span>across the electrodes of a voltaic cell. Therefore, the system that this kind of reaction produces electrical energy is in a GALVANIC CELL. Hope this helps.</span>
Answer:
3.5 × 10⁵ g of salt
Explanation:
<em>What is the mass (grams) of salt in 10.0 m³ of ocean water?</em>
We have this data:
- 1.000 mol salt is equal to 58.44 g salt
- 1.0 L of ocean water contains 0.60 mol of salt
We will need the following relations:
We can use proportions:
