Answer:
First start with the ones we know
Explanation:
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3.dna- is all the chromosomes (genetic material)
A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell
a pair - so must be bigger than one chromosome
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3. homologus pair
4.dna- is all the chromosomes (genetic material)
now 5.
A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA. DNA is long and skinny, capable of contorting like a circus performer when it winds into chromosomes.
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3. homologus pair
4.dna- is all the chromosomes (genetic material)
5. genome - all the DNA
Cell
Nucleus
DNA
Chromosome
Gene
Oxidation
iron+oxygen happened
I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Answer:
A). 92.02g
Explanation:
Equation of the reaction;
N2 (g)+ 2O2(g)------> 2NO2(g)
Note that the balanced reaction equation is the first step in solving any problem on stoichiometry. Once the reaction equation is correct, the question can be easily solved.
Reaction of one mole of nitrogen gas with two moles of oxygen gas yields two moles of nitrogen dioxide.
Mass of two moles of nitrogen dioxide= 2[14 + 2(16)] = 2[14+32]= 2[46]= 92 gmol-1
Therefore; Mass of two moles of nitrogen dioxide is 92
In an endothermic reaction products are <u>HIGHER </u>than reactants in potential energy and <u>LESS </u>stable.
Explanation:
Energy is input into the reaction in an endothermic reaction. This means the products are of a higher energy level than the reactants. Therefore the reaction increases Gibb's free energy and reduces entropy. Remember in thermodynamic stability involves an increase in entropy and a decrease in Gibbs free energy. Therefore the products are less stable than the reactants. This is why endothermic reactions do not occur spontaneously like exothermic reactions.