The density of metal block in grams per cubic centimeter is 10.70 g/cm³.
Given,
Mass of metal block = 5.16 lb
1 lb = 453.592 g
5.26 lb = 2340.536 g
The volume of metal block = 14 in 3
1 in = 2.5 cm
1 in 3 = 15.625 cm³
14 in 3 = 218.75 cm³
Density is defined as the mass per unit volume of a substance. Or, it is the ratio of mass to the volume of the substance.
As we know,
Density = mass/volume
Or, density = 2340.536 / 218.75
Or, density = 10.70 g/cm³
Therefore, the density of the metal block is 10.70 g/cm³.
To learn more about the density, visit: brainly.com/question/15164682
#SPJ9
7.4x10^23 = molecules of silver nitrate sample
6.022x10^23 number of molecules per mole (Avogadro's number)
Divide molecules of AgNO3 by # of molecules per mol
7.4/6.022 = 1.229 mols AgNO3 (Sig Figs would put this at 1.3)
(I leave off the x10^23 because they both will divide out)
Use your periodic table to find the molar weight of silver nitrate.
107.868(Ag) + 14(N) + 3(16[O]) = 169.868g/mol AgNO3
Now multiply your moles of AgNO3 with your molar weight of AgNO3
1.229mol x 169.868g/mol = 208.767g AgNO3
Answer:
two nonmetal elements join together to form covalent compounds
Answer:
Le Chatelier's principle can be applied in explaining the results
Explanation:
According to Le Chatelier's principle, when a constraint such as a change in concentration in this case is imposed on a chemical system in equilibrium, the system will adjust itself in such a way as to annul the constraint imposed.
Hence, when the color of the solution was more like that of the control, the reaction would shift towards the left. Similarly, when the color was more like it was towards the reactant, the reaction would shift towards the right.
If we were to prepare calcium oxalate, we should prepare it in a base solution. This is because when the base was added to calcium oxalate, it did not form any precipitate but when an acid was added to the calcium oxalate, it formed a precipitate.
The activation energy is the minimum amount of energy that particles must have in order for them to participate in a chemical reaction. During chemical reactions bonds are broken and formed. Particles must collide with sufficient energy in order for the initial bonds to be broken. The activation energy is that that initial minimum energy that the particles can have in order for the bonds to be broken. Stronger bonds would require more energy to be broken and therefore the activation energy for such would be higher.