Answer:
Here,
0.01040 m as an integer= 1.04 × 10-2
C. If the mass or length of substance changes it's extensive
Explanation:
the experiment conducted is the student adds sugar to a cup of iced tea and a cup of hot tea. She notices that the time needed for the sugar to dissolve in each cup is different. She thinks this has something to do with the temperature of the tea
hypothesis: If the student puts the sugar in both glasses of tea, then the sugar in the hot tea should dissolve quicker.
Answer:
Molality = 0.43 m
Explanation:
Given data:
Mass of barium sulfide = 25.4 g
Mass of water = 349 g (349 g/1000 = 0.349 Kg)
Molality of water = ?
Solution:
Number of moles of barium sulfide:
Number of moles = mass/molar mass
Number of moles = 25.4 g/169.39 g/mol
Number of moles = 0.15 mol
Molality:
Molality = number of moles o f solute/ Kg of solvent
Molality = 0.15 mol / 0.349 Kg
Molality = 0.43 m