Answer:
Explanation:
2 HCl(g) + Mg(s) → MgCl₂(s) + H₂(g)
Let's calculate the quantity of mole of produced hydrogen with the Ideal Gases Law
P . V = n . R .T
2.19 atm . 6.82L = n . 0.082 . 308K
(2.19 atm . 6.82L) / (0.082 . 308K) = n
0.591 mol = n
1 mol of H₂ gas came from 2 mol of hydrochloric, so, 0.591 mol came from the double of mole
0.591 .2 = 1.182 mole of acid.
Molar mass of HCl = 36.45 g/m
1.182 mole are (36.45 g/m . 1.182g ) contained in 43.1 g
Density HCl = HCl mass / HCl volume
0,118 g/mL = 43.1 g / HCl volume
43.1 g / 0.118 g/mL = 365.3 mL (HCl volume)
The earths gravity attracts the molecules and collects the most near the surface. They all have weight and therefore have more pressure at the surface, as well. As you go higher, the attraction becomes less and these molecules some times fly off into space. This layer of equilibrium has the least of weight or pressure.
The various pressures are measured by precision instruments called barometers or pressure sensors and expressed in inches of mercury or millibars. <span>Air has a weight too, although not very much, If you "pile" the air mile high, the bottom pressure is heavier because of all the air sitting on top of it, therefore the pressure decreases with altitude, because there is less air "piled up" </span>
<span>An analogy would be the same with water.</span>
Planes have these instruments that tells the crew the altitude above sea level they are at when flying.
Answer:
Net ionic equation:
Zn²⁺(aq) + 2OH⁻(aq) → Zn(OH)₂(s)
Explanation:
Chemical equation:
ZnCl₂ + KOH → KCl + Zn(OH)₂
Balanced chemical equation:
ZnCl₂ + 2KOH → 2KCl +Zn(OH)₂
Ionic equation;
Zn²⁺(aq) + 2Cl⁻(aq) + 2K⁺(aq) + 2OH⁻(aq) → 2K⁺(aq) + 2Cl⁻(aq) +Zn(OH)₂(s)
Net ionic equation:
Zn²⁺(aq) + 2OH⁻(aq) → Zn(OH)₂(s)
The K⁺ and Cl⁻ are spectator ions that's why these are not written in net ionic equation. The Zn(OH)₂ can not be splitted into ions because it is present in solid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation.
Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698