Answer:
<h2>15 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
3000 g = 3 kg
We have
net force = 3 × 5 = 15
We have the final answer as
<h3>15 N</h3>
Hope this helps you
Energy is required to change the phase of a substance, such as the energy to break the bonds between molecules in a block of ice so it may melt.
During a phase change energy my be added or subtracted from a system, but the temperature will not change. The temperature will change only when the phase change has completed. No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings. Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart so that the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature.
Answer:
0.250 moles of MgO are produced when 0.250 mol of Mg reacts completely with O₂
Explanation:
In first place, the balanced reaction between Mg and O₂ is:
2 Mg + O₂ ⇒ 2 MgO
By stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reactants and products participate in the reaction:
- Mg: 2 moles
- O₂: 1 mole
- MgO: 2 moles
Then you can apply the following rule of three: if by reaction stoichiometry 2 moles of Mg produce 2 moles of MgO, 0.250 moles of Mg, how many moles of MgO will they form?

moles of MgO= 0.250
<u><em>0.250 moles of MgO are produced when 0.250 mol of Mg reacts completely with O₂</em></u>
D is the answer. A, B,C are absurd. Doing a little word right there.