Answer:
t = 5.59x10⁴ y
Explanation:
To calculate the time for the ¹⁴C drops to 1.02 decays/h, we need to use the next equation:
(1)
<em>where
: is the number of decays with time, A₀: is the initial activity, λ: is the decay constant and t: is the time.</em>
To find A₀ we can use the following equation:
(2)
<em>where N₀: is the initial number of particles of ¹⁴C in the 1.03g of the trees carbon </em>
From equation (2), the N₀ of the ¹⁴C in the trees carbon can be calculated as follows:
<em>where
: is the tree's carbon mass,
: is the Avogadro's number and
: is the ¹²C mass. </em>
Similarly, from equation (2) λ is:
<em>where t 1/2: is the half-life of ¹⁴C= 5700 years </em>

So, the initial activity A₀ is:
Finally, we can calculate the time from equation (1):
I hope it helps you!
<u><em>PRIMARY </em></u>Waves Are Detected First Because They Move So Fast.
<u><em>RIGHT</em></u> Angles To The Direction of Movement.
A Kind Of Scale Used To Measure The Amount of Seismic Energy Released By An Earthquake <u><em>RICHTER SCALE</em></u>
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation:
Answer:
The Sun has a north and south pole, just as the Earth does, and rotates on its axis. However, unlike Earth which rotates at all latitudes every 24 hours, the Sun rotates every 25 days at the equator and takes progressively longer to rotate at higher latitudes, up to 35 days at the poles. This is known as differential rotation.
Explanation: