1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
2 years ago
7

Which type of central heating system is often used when heating many buildings from a central location?

Physics
2 answers:
RoseWind [281]2 years ago
6 0

Answer:

Correct answer is option D

Explanation:

Electric baseboard is not a correct option because it is very expensive.

Forced-air is and hot water are also not correct option because they are less efficient and more expensive in comparison to steam.

Steam as a central heating system is often used when heating many buildings from a central location because it is less expensive and more efficient. For generating steam, solar energy or fossil fuels are used. Steams is passed in the whole buildings through pipelines from a central location.

Deffense [45]2 years ago
5 0
Steam is often used as a central heating system when heating many buildings froma central location. So the correct option for the given question is option "D". Steam is actually generated ina single room or place mechanically or by useing fossil fuel or solar energy and then it is passed through pipelines to several rooms and buidings. This kind of system is mostly used when heating several rooms or building at once. Electric heaters are normally avoided as the cost of electricity is far higher than any other source of heating.
You might be interested in
M84, M87, and NGC 4258 all have accretion disks around their central black holes for which the rotational velocities have been m
givi [52]

Answer:

<u>For M84:</u>

M = 590.7 * 10³⁶ kg

<u>For M87:</u>

M = 2307.46 * 10³⁶ kg

Explanation:

1 parsec, pc  = 3.08 * 10¹⁶ m

The equation of the orbit speed can be used to calculate the doppler velocity:

v = \sqrt{\frac{GM}{r} }

making m the subject of the formula in the equation above to calculate the mass of the black hole:

M = \frac{v^{2} r}{G}.............(1)

<u>For M84:</u>

r = 8 pc = 8 * 3.08 * 10¹⁶

r = 24.64 * 10¹⁶ m

v = 400 km/s = 4 * 10⁵ m/s

G = 6.674 * 10⁻¹¹ m³/kgs²

Substituting these values into equation (1)

M = \frac{( 4*10^{5}) ^{2} *24.64* 10^{16} }{6.674 * 10^{-11} }

M = 590.7 * 10³⁶ kg

<u>For M87:</u>

r = 20 pc = 20 * 3.08 * 10¹⁶

r = 61.6* 10¹⁶ m

v = 500 km/s = 5 * 10⁵ m/s

G = 6.674 * 10⁻¹¹ m³/kgs²

Substituting these values into equation (1)

M = \frac{( 5*10^{5}) ^{2} *61.6* 10^{16} }{6.674 * 10^{-11} }

M = 2307.46 * 10³⁶ kg

The mass of the black hole in the galaxies is measured using the doppler shift.

The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.

3 0
3 years ago
A 22 µF capacitor charged to 0.7 kV and a second 115 µF capacitor charged to 5.5 kV are connected to each other, with the positi
vesna_86 [32]

Answer:

0.099C

Explanation:

First, we need to get the common potential voltage using the formula

V=\frac {C_2V_2-C_1V_1}{C_1+C_2}

Where V is the common voltage, C and V represent capacitance and charge respectively. Subscripts 1 and 2 to represent the the first and second respectively. Substituting the above with the following given values then

C_1=22\times 10^{-6} F\\ C_2=115\times 10^{-6} F\\ V_1= 0.7\times 10^{3}\\V_2=5.5\times 10^{3}

Therefore

V=\frac {115\times 10^{-6}\times 5.5\times 10^{3}-22\times 10^{6}\times 0.7\times 10^{3}}{22\times 10^{-6}+115\times 10^{-6}}=4504.3795620437

Charge, Q is given by CV hence for the first capacitor charge will be Q_1=C_1V

Here, Q_1=22\times 10^{-6}\times 4504.3795620437=0.0990963503649C\approx 0.099C

8 0
3 years ago
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
2 years ago
Neil has 3 partially full cans of white pants. they contain 1/3 gallon, 1/5 gallon,and 1/2 gallon of paint About how much paint
Oliga [24]
He has 1 1/30 gallons, or 31/30 gallons, you can find this by setting all the fractions to a common denominator and adding them
7 0
3 years ago
a body starts from rest with a uniform acceleration of 2m s-2 find the distance covered by the body in 2s
Evgen [1.6K]
Finding acceleration= final velocity-initial velocity/ time taken (or A= V-U/T)

Final speed= 2m
Initial speed= 0m
Time taken= 2 seconds

2-0/2 so it’ll be 1m/s

2-0=0
2/2=

8 0
2 years ago
Other questions:
  • Tarzan swings back and forth on a long vine with a period of 7.27 s. how long is the vine?(unit=m)
    9·1 answer
  • You throw a baseball that has a mass of 0.425 kilograms. The ball leaves your hand with a speed
    14·1 answer
  • The light intensity incident on a metallic surface with a work function of 3 eV produces photoelectrons with a maximum kinetic e
    10·1 answer
  • When an object moves, stops moving, changes speed, or changes direction, how do scientists describe that condition?
    15·2 answers
  • hhTwo cups of the same size are filled to the brim with clear liquids. Cup A holds water. Cup B contains alcohol. Your teacher c
    9·2 answers
  • You are trying to determine the specific gravity of a solid object that floats in water. If m is the mass of your object, mS is
    14·1 answer
  • A wave is a disturbance that transfers energy through medium from one place to another.  Do the particles in the medium travel w
    11·1 answer
  • In a compound chemical energy is contained in the what ?
    9·2 answers
  • Why do planents revolve around the sun ?​
    9·1 answer
  • A proton, starting from rest, accelerates through a potential difference of 1.0 kV and then moves into a magnetic field of 0.040
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!