Answer:
The equation of equilibrium at the top of the vertical circle is:
\Sigma F = - N - m\cdot g = - m \cdot \frac{v^{2}}{R}
The speed experimented by the car is:
\frac{N}{m}+g=\frac{v^{2}}{R}
v = \sqrt{R\cdot (\frac{N}{m}+g) }
v = \sqrt{(5\,m)\cdot (\frac{6\,N}{0.8\,kg} +9.807\,\frac{kg}{m^{2}} )}
v\approx 9.302\,\frac{m}{s}
The equation of equilibrium at the bottom of the vertical circle is:
\Sigma F = N - m\cdot g = m \cdot \frac{v^{2}}{R}
The normal force on the car when it is at the bottom of the track is:
N=m\cdot (\frac{v^{2}}{R}+g )
N = (0.8\,kg)\cdot \left(\frac{(9.302\,\frac{m}{s} )^{2}}{5\,m}+ 9.807\,\frac{m}{s^{2}} \right)
N=21.690\,N
Escape velocity is the speed that an object needs to be traveling to break free of a planet or moon's gravity well and leave it without further propulsion. For example, a spacecraft leaving the surface of Earth needs to be going 7 miles per second, or nearly 25,000 miles per hour to leave without falling back to the surface or falling into orbit.
Answer:
0.3 %
Explanation:
Earth cleans and replenishes the water supply through the hydrologic cycle. The earth has an abundance of water, but unfortunately, only a small percentage, is even usable by people.
Answer:
Explanation:
KE = ½Iω²
ΚΕ = ½(mL²/3)ω²
ΚΕ = ½(0.63(0.82²)/3)4.2²
ΚΕ = 1.24541928
KE = 1.2 J
Answer:
the net force applied to the car is zero.
Explanation:
According to Newton's second law, the acceleration of an object (a) is directly proportional to the net force applied (F):

where m is the object's mass.
In this problem, the car is moving with constant velocity: this means that the acceleration is zero, a = 0. Therefore, according to the previous equation, the net force must also be zero: F = 0. So, the correct answer is
the net force applied to the car is zero.