Answer:
high ph -basic,low pH -acidic
Explanation:
hi I'm from India nice to meet you
<h2>

</h2>
Explanation:
1. Water decomposition
- Decomposition reactions are represented by-
The general equation: AB → A + B.
- Various methods used in the decomposition of water are -
- Electrolysis
- Photoelectrochemical water splitting
- Thermal decomposition of water
- Photocatalytic water splitting
- Water decomposition is the chemical reaction in which water is broken down giving oxygen and hydrogen.
- The chemical equation will be -

Hence, balancing the equation we need to add a coefficient of 2 in front of
on right-hand-side of the equation and 2 in front of
on left-hand-side of the equation.
∴The balanced equation is -
→ 
2. Formation of ammonia
- The formation of ammonia is by reacting nitrogen gas and hydrogen gas.
→ 
Hence, for balancing equation we need to add a coefficient of 3 in front of hydrogen and 2 in front of ammonia.
∴The balanced chemical equation for the formation of ammonia gas is as follows -
→
.
- When 6 moles of
react with 6 moles of
4 moles of ammonia are produced.
Answer:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
Explanation:
We have the products of a reaction and we have to predict the reactants. Since the products are binary salt and water, this must be a neutralization reaction. In neutralizations, acids react with bases. The acid that gives place to Br⁻ is HBr, while the base the gives place to Ba²⁺ is Ba(OH)₂. The balanced chemical equation is:
Ba(OH)₂ + 2 HBr ⇒ BaBr₂ + 2 H₂O
<u>Answer:</u> The correct answer is Option 5.
<u>Explanation:</u>
- To calculate the molarity of the solution after mixing 2 solutions, we use the equation:

where,
are the n-factor, molarity and volume of the NaOH.
are the n-factor, molarity and volume of the 
We are given:
Putting all the values in above equation, we get:

- To calculate the molarity of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base.
We are given:

Putting values in above equation, we get:

Hence, the correct answer is Option 5.
Answer: the speed at which products form
Explanation:
Rate of a reaction is defined as the speed at which a chemical reaction proceeds. It is often expressed in terms of the concentration of a reactant that is consumed in a unit time or the concentration of a product that is formed in a unit of time.
For a general reaction :
![Rate=-\frac{d[A]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
or ![Rate=+\frac{d[B]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
where d[A] = change in concentration of reactant A
d[B] = change in concentration of product B
dt = time interval