Answer:
We need 17.2 L of Ca(OH)2
Explanation:
Step 1: Data given
Concentration of Ca(OH)2 = 1.45 M
Moles of H2SO4 = 25.0 moles
Step 2: The balanced equation
Ca(OH)2 + H2SO4 ⟶2H2O + CaSO4
Step 3: Calculate moles Ca(OH)2
For 1 mol Ca(OH)2 we need 1 mol H2SO4 to produce 2 moles H2O and 1 mol CaSO4
For 25.0 moles H2SO4 we'll need 25.0 moles Ca(OH)2 to produce 50 moles H2O and 25.0 moles CaSO4
Step 4: Calculate volume of Ca(OH)2
Volume Ca(OH)2 = moles Ca(OH)2 / concentration Ca(OH)2
Volume Ca(OH)2 = 25.0 moles / 1.45 M
Volume Ca(OH)2 = 17.2 L
We need 17.2 L of Ca(OH)2
Answer:
There is 17.1 kJ energy required
Explanation:
Step 1: Data given
Mass of ethanol = 322.0 grams
Initial temperature = -2.2 °C = 273.15 -2.2 = 270.95K
Final temperature = 19.6 °C = 273.15 + 19.6 = 292.75 K
Specific heat capacity = 2.44 J/g*K
Step 2: Calculate energy
Q = m*c*ΔT
⇒ m = the mass of ethanol= 322 grams
⇒ c = the specific heat capacity of ethanol = 2.44 J/g*K
⇒ ΔT = T2 - T1 = 292.75 - 270.95 = 21.8 K
Q = 322 * 2.44 * 21.8 = 17127.8 J = 17.1 kJ
There is 17.1 kJ energy required
PH scale is used to determine how acidic, basic or neutral a solution is
pH can be calculated using the H₃O⁺
ph can be calculated as follows
pH = - log[ H₃O⁺]
[H₃O⁺] = 1 x 10⁻⁹
pH = - log [1 x 10⁻⁹]
pH = 9
pH of solution is 9
Answer:
Potassium (K) = (2,8,8,1)
This is the element that has three(3) filled energy level and one valence electron
The characteristics of solids that is most responsible for their structure are:
1. BONDING PATTERNS BETWEEN ATOMS.
2. TYPES OF MATTER IN SOLIDS.
Solid state is one of the four states of matter that exist; the other three are liquid, gas and plasma. Solids generally have their constituent particles arranged in a regular pattern, which is known as crystalline structure. The crystalline structure of the solid is due to the types of matter and the chemical bonds that exist between the particles of solids. The constituent particles of a solid can be atoms, ions or molecules.