Answer:
Silver, 0.239 J/(g °C)
Explanation:
- The heat change is related to specific heat as given by the formula;
Heat change = mass of substance × specific heat × change in temperature
- Therefore; considering same amount of substance or equal masses and have the same initial temperature.
- The change in temperature will be inversely proportional to the specific heat.
- Therefore; the higher the specific heat lower the temperature change.
- Hence, the change in temperature will be highest for the substance with the lowest specific heat.
Therefore; the one that will increase in temperature the most is Silver
A technician mixes 80 ml of a 5% solution with 10 ml of water. the final percentage strength of the solution prepared is 40 %.
given that :
8 ml of a 5 % solution mix with 10 ml . that means the 80 mL of 5 % solution is diluted with water of 10 mL
therefore, 80 × 5 = 10 × x %
x % = 40 %
Therefore, the final percentage strength of the solution is 40 %
Thus, A technician mixes 80 ml of a 5% solution with 10 ml of water. the final percentage strength of the solution prepared is 40 %.
To learn more about percentage strength here
brainly.com/question/17130362
#SPJ4
If the sealed glass is permeable to sunlight or to transfer of heat will be an open system, but if the sealed glass is a thermic glass and doesn't allow exchange of heat and exchange of solar energy (for example a mirrored glass that reflect the sunlight) and the terrarium is not exchanging energy with the surroundings will be a closed system. It is a question that doesn't specify too many details about the system in the study. It is hard to give a final answer without making some assumptions.
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g