Answer:
A u = 0.36c B u = 0.961c
Explanation:
In special relativity the transformation of velocities is carried out using the Lorentz equations, if the movement in the x direction remains
u ’= (u-v) / (1- uv / c²)
Where u’ is the speed with respect to the mobile system, in this case the initial nucleus of uranium, u the speed with respect to the fixed system (the observer in the laboratory) and v the speed of the mobile system with respect to the laboratory
The data give is u ’= 0.43c and the initial core velocity v = 0.94c
Let's clear the speed with respect to the observer (u)
u’ (1- u v / c²) = u -v
u + u ’uv / c² = v - u’
u (1 + u ’v / c²) = v - u’
u = (v-u ’) / (1+ u’ v / c²)
Let's calculate
u = (0.94 c - 0.43c) / (1+ 0.43c 0.94 c / c²)
u = 0.51c / (1 + 0.4042)
u = 0.36c
We repeat the calculation for the other piece
In this case u ’= - 0.35c
We calculate
u = (0.94c + 0.35c) / (1 - 0.35c 0.94c / c²)
u = 1.29c / (1- 0.329)
u = 0.961c
Here it is the use of vector and conservation of momentum !
so,
√(16^2+21^2) ×1000= 3000 v
v =8.8 m/s
so answer is B !
if you have any doubt, you can ask ! just comment !
This problem can be solved based on the rule of energy conservation, as the energy of the photon covers both the energy needed to overcome the binding energy as well as the energy of ejection.
The rule can be written as follows:
energy of photon = binding energy + kinetic energy of ejectection
(hc) / lambda = E + 0.5 x m x v^2 where:
h is plank's constant = 6.63 x 10^-34 m^2 kg / s
c is the speed of light = 3 x 10^8 m/sec
lambda is the wavelength = 310 nm
E is the required binding energy
m is the mass of photon = 9.11 x 10^-31 kg
v is the velocity = 3.45 x 10^5 m/s
So, as you can see, all the parameters in the equation are given except for E. Substitute to get the required E as follows:
(6.63x10^-34x3x10^8)/(310x10^-9) = E + 0.5(9.11 x 10^-31)(3.45x10^5)^2
E = 6.41 x 10^-16 joule
To get the E in ev, just divide the value in joules by 1.6 x 10^-19
E = 4.009 ev
B) Games Won
Explanation:
On the vertical y-axis, the number of games won would be labelled.
- It is a common practice in science to put the dependent variables on the y-axis.
- The independent variables are drawn on the x-axis.
- In this problem, the number of games won is the dependent variable.
- The number of years is independent. It is fixed.
learn more:
Variables brainly.com/question/2088386
#learnwithBrainly
Answer:
UV radiation is widely used in industrial processes and in medical and dental practices for a variety of purposes, such as killing bacteria, creating fluorescent effects, curing inks and resins, phototherapy and suntanning.
Explanation: