Answer:
Explanation:
v = u +at
u = 0
a = 2.3 m /s²
t = 20 s
v = 2.3 x 20
= 46 m /s
Distance covered under acceleration of 2.3 m/s²
s = ut + 1/2 at²
= 0 + .5 x 2.3 x 20²
= 460 m
After that it moves under free fall ie g acts on it downwards .
v² = u² - 2gh , h is height moved by it under free fall
0 = 46² - 2 x 9.8 h
h = 107.96 m
Total height attained
= 460 + 107.96
= 567.96 m
b ) At its highest point ,it stops so its velocity = 0
c ) rocket's acceleration at its highest point = g = 9.8 downwards .
At highest point , it is undergoing free fall so its acceleration = g
Answer:
Zeros that follow non-zero numbers and are also to the right of a decimal point are significant.
Explanation:
For example:
0.300 has 3 significant figures.
5.400 has 4 significant figures.
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
Answer:
g / 16
Explanation:
T = 2π 
angular frequency ω = 2π /T
= 
ω₁ /ω₂ = 
Putting the values
ω₁ = ω , ω₂ = ω / 4
ω₁ /ω₂ = 4
4 = 
g₂ = g / 16
option d is correct.