Answer:
1 mole of H2O is 18 grams (2 g H + 16 g Oxygen)
36 / 18 = 2
So 2 moles = 2 * 6.02E23 = 12.04E23 = 1.204E24
The work is path independent since we have a conservative force.
Thus
Answer (1)
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
Answer:
It is C on edge.
Explanation:
Because I just figured it out and got it right and because it says so in the link provided from the question.
Answer:
<em>500Joules</em>
Explanation:
Kinetic energy = 1/2mv²
m is the mass of the wood
v is the velocity
Given
Mass = 10kg
Velocity v = 10m/s
Substitute into the formula and get KE
KE = 1/2 * 10 * 10²
KE = 1/2 * 1000
KE = 500Joules
<em>Hence the kinetic energy of the wood during delivery is 500Joules</em>