Answer:
you count the squares or messure it
Explanation:
you can raw equal squares about 1 cm wide if possible all equal and count the squares eg theres 10 squares (small hand) so that would be 10cm squared
Explanation:
direction of electric field is same as that of force experienced by the test charge
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.
Answer:
An object is called a horizontal projectile if it is launched from a certain height with some initial horizontal velocity only. The initial vertical velocity of such an object is zero. But as the object falls through the atmosphere the horizontal component of velocity remains constant but vertical component increases due to gravitational acceleration.
Explanation:
Answer:
the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.
Explanation:
The different graphics depending on time give various information, let's examine what we can get from some
Graph of x -t. from this graph we can obtain the speed through the slope, but the acceleration is not directly obtainable
v-t chart. We can get the acceleration not through the slope and the distance traveled by the area under the curve. Obtaining acceleration is very accurate since it is an average that avoids possible errors in measurements. This is the best graph to find the acceleration
Graph of a-t In this graph the acceleration is a point on the Y axis, it gives some errors because it depends strongly on the possible experimental errors.
In conclusion, the best graph to find the acceleration is v-t since calculating the slope averages the different experimental errors.