Answer:
The correct answer is a rarefaction.
Explanation:
Sound waves are longitudinal waves that propagate in a medium, such as air. As the vibration continues, a series of successive condensations and rarefactions form and propagate from it. The pattern created in the air is something like a sinusoidal curve to represent a sound wave.
There are peaks in the sine wave at the points where the sound wave has condensations and valleys where it has rarefactions.
Have a nice day!
Hello there! Quantitive data has to do with measurements that can be shown with numbers. Examples of this are things like your height and the length of your arms. With that alone, A and B are eliminated, because those answer choices make no sense. They can't be expressed by numbers and you can't measure colors or odors mathematically. Volume is a way to measure something that CAN be written down by numbers. D is the only answer choice that fits the definition of quantitive data. The answer is D: volume.
<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Well, im pretty sure that when we do touch eachother, the atoms themselves are touching. idk if this is what ur looking for but hope this helps.