Answer:
c.
Explanation:
they are all almost correct.
c is the only fully correct option
Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance
Answer:
Removing some of the books reduced the mass of the box, and less force was needed to push it across the floor.
Well you need to have lots of heat
Answer:
900 W.
Explanation:
Given that
Electric heater 1500 W
We know that power P given as
P= V I
So the total power of 120 V and 20 A circuit
P = 120 x 20
P= 2400 W
So the power new load P'
P'= Total system power(P)- Electric heater load
P ' = 2400 - 1500
P'= 900 W
So the answer is 900 W.