Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.
Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph
Speed of the boat by when it will hit the dock is 40.33 mph
The distance at which the boat will have to start decelerating is 312.5 m
Use the equation potential energy =m*g*h
m-mass,
g-gravitational acceleration,
h-height
Potential energy = 2*10*10
=200
This is the unit of the energy
Answer:
cold cathode fluorescent lamp
Explanation:
A cold cathode fluorescent lamp (CCFL) is a lighting system that uses two phenomena: electron discharge and fluorescence.
CCFLs are mainly used as light sources for backlights, since they are compact and durable than ordinary fluorescent lamps. They exhibit a wide range of brightness and color (color temperature and chromaticity) that can be achieved by varying the pressure and type of the material injected into the glass tube. The thickness and type of the phosphor used to coat the inner wall of the tube also plays a role in altering the color and brightness.
Answer:20s
To find speed we have to divide speed and distance
5=100/?
100/5=20
Answer:
a) -31.36 m/s
b) 50.176 m
Explanation:
<h2>a) Velocity of the bag</h2>
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told <u>it was "dropped", this means it goes to ground in free fall</u>)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Hence:
Note the negative sign is because the direction of the bag is downwards as well.
<h2>b) Final height of the bag</h2>
In this case we will use the following equation:
(3)
Where:
is the distance the bag has fallen
remembering <u>the bag was dropped</u>
is the acceleration due gravity (downwards)
is the time
Then:
(3)
(4)
Finally: