The empirical formula is a formula of a compound showing the proportion of each element involved in the compounds but it does not represent the total number of atoms in the compound. It is the lowest number of ratio between the elements in the compound. In order, to determine the actual number of the atoms or the molecular formula of the compounds, we make use of the molar mass of the compound.
<span>To
determine the molecular formula, we multiply a value to the empirical formula.
Then, calculate the molar mass and see whether it is equal to the one
given (104.1 g/ mol). From the choices, the only valid options are b, d and e.
</span> molar mass
1 CH 13.02
8 C8H8 104.16
6 C6H6 78.12
Therefore the correct answer is option B.
Answer:
Ca
2+
<K + <Ar<Cl − <S 2−
Explanation:
Ar,K +
,Cl −
,S 2−
,Ca 2+
have the same number of electrons. Their radii would be different because of their different nuclear charges. The cation with the greater positive charge will have a smaller radius because of the greater attraction of the electrons to the nucleus. Anion with the greater negative charge will have the larger radius. In this case, the net repulsion of the electrons will outweigh the nuclear charge and the ion will expand in size. Hence the correct order will be Ca
2+ <K + <Ar<Cl − <S 2−
The heat required to raise the temperature of a certain mass of sample to a specific temperature change, we use the formula mCpΔT where m is mass, Cp is the specific heat of the substance and ΔT is the temperature change. In this case, we substitute and form 1.25 g x 0.057 cal/g C *20 C equal to 1.425 calories.
Molting
~~~hope this helps~~~
~~~davatar~~~
Can you give me the anwsers