Answer:
₁₁A
Explanation:
Atomic radius
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons.
This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases.
So in given elements consider A₁₁, B₁₂, C₁₃ ans D₁₇ as sodium, magnesium, aluminium and chlorine. This is the third period and as we move form sodium to chlorine atomic radius decreases. That's why sodium has greater size.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased
Answer:
Oxidation occurs at the anode: Fe(s) | Fe2+(aq) half cell. (ii) Reduction occurs at the cathode: Ag(s) | Ag+(aq) half cell. Oxidation occurs at the anode: Pt | Sn2+(aq), Sn4+(aq) half cell. (iii) Electrons flow from the anode to the cathode: from the Pt(s) → Ag(s) electrode.
Answer:
uhh
Explanation:
Have no clue but I hope u get the question answered
Answer:
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Explanation:
Let's consider the unbalanced equation that occurs when phosphoric acid reacts with barium hydroxide to form water and barium phosphate. This is a neutralization reaction.
H₃PO₄(aq) + Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
We will balance it using the trial and error method.
First, we will balance Ba atoms by multiplying Ba(OH)₂ by 3 and P atoms by multiplying H₃PO₄ by 2.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + H₂O(l)
Finally, we will get the balanced equation by multiplying H₂O by 6.
2 H₃PO₄(aq) + 3 Ba(OH)₂(aq) ⇒ Ba₃(PO₄)₂(s) + 6 H₂O(l)
Answer:
carbon dioxide is a gas so it isn't collected over water.
Explanation:
it works for insoluble gases such as hydrogen,or gases that do not dissolve easily in water such as ammonia and chlorine are readily soluble in water and are not collected this way.
hope it is helpful for you.