(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1
Answer:
The magnitude of the centripetal force to make the turn is 3,840 N.
Explanation:
Given;
radius of the cured road, r = 400 m
speed of the car, v = 32 m/s
mass of the car, m = 1500 kg
The magnitude of the centripetal force to make the turn is given as;

where;
Fc is the centripetal force

Therefore, the magnitude of the centripetal force to make the turn is 3,840 N.
Answer:
The magnitude is "3.8 m/s²", in the upward direction.
Explanation:
The given values are:
Mass,
m = 88 kg
Scale reads,
T = 900 N
As we know,
⇒ 
On substituting the given values, we get
⇒ 
⇒ 
Now,
⇒ 
On substituting the given values in the above equation, we get
⇒ 
On subtracting "862.4" from both sides, we get
⇒ 
⇒ 
⇒ 
⇒
(upward direction)