Answer:
<h2>Refer the attachment for answer and explanation please</h2>
Explanation:
This might surely help you ☺️❤️
Answer:
An asteroid moving at a constant speed through space.
Explanation:
Answer:
Some examples of things that stick together include clothes after they were in the dryer because a charge builds up on the objects, causing them to attract to each other. Things that don't stick together may include two neutral objects, like two pieces of neutral paper. ... If they repel, then they are the same charge.
Explanation:
Answer:
Explanation:
a) Energy stored in spring = 1/2 k x² = .5 x k 0.1²
500 = 5 x 10⁻³ k ,
k = (500/5) x 10³ = 10⁵ N/m
b )
k = 4.5 x 10¹ = 45 N/m
Stored energy = 1/2 k x² = .5 x 45 x 8² x 10⁻⁴ =1440 x 10⁻⁴ J
This energy gets dissipated by friction .
work done by friction = μ mg d
d is the distance traveled under friction
so 1440 x 10⁻⁴ = μ x 3 x 9.8 x 2
μ = 245 x 10⁻⁴ or 0.00245 which appears to be very small. .
Speed of particle B is 2v₀/3 m/s to the left. Particle A and particle B will always have equal speed since they experience equal forces.
<h3>Conservation of energy</h3>
The speed and direction of the particle B is determined by applying the principle of conservation of energy as follows;
K.E₁ + P.E₁ = K.E₂ + P.E₂


At any given position, the speed of particle A and particle B will be equal, since they experience equal force and they have equal masses.
The complete question is below:
Particle A and particle B, each of mass M, move along the x-axis exerting a force on each other. The potential energy of the system of two particles assosicated with the force is given by the equation U=G/r 2, where r is the distance between the two particles and G is a positive constant. At time t=T1 particle A is observed to be traveling with speed 2vo/3 to the left. The speed and direction of motion of particle B is ?
Learn more about conservation of energy here: brainly.com/question/166559