1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elanso [62]
1 year ago
6

78.6 grams of O2 and 67.3 grams of F2 are placed in a container with a volume of 40.6 L. Find the total pressure if the gasses a

re at a temperature of 43.13 °C.
Chemistry
1 answer:
saul85 [17]1 year ago
5 0

1) List the known and unknown quantities.

<em>Sample: O2.</em>

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

<em>Sample: F2.</em>

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

2) Find the pressure of O2.

<em>2.1- List the known and unknown quantities.</em>

<em>Sample: O2.</em>

Mass: 78.6 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

<em>2.2- Convert grams of O2 to moles of O2.</em>

The molar mass of O2 is 31.9988 g/mol.

mol\text{ }O_2=78.6\text{ }g*\frac{1\text{ }mol\text{ }O_2}{31.9988\text{ }g\text{ }O_2}=2.46\text{ }mol\text{ }O_2

<em>2.3- Set the equation.</em>

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)

PV=nRT

<em>2.4- Plug in the known quantities and solve for P.</em>

(P)(40.6\text{ }L)=(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)

<em>.</em>

P_{O_2}=\frac{(2.46\text{ }mol\text{ }O_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)}{40.6\text{ }L}P_{O_2}=1.57\text{ }atm

<em>The pressure of O2 is 1.57 atm.</em>

3) Find the pressure of F2.

<em>3.1- List the known and unknown quantities.</em>

<em>Sample: F2.</em>

Mass: 67.3 g.

Volume: 40.6 L.

Temperature: 43.13 ºC = 316.28 K.

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1).

3.2- <em>Convert grams of F2 to moles of F2.</em>

The mmolar mass of F2 is 37.9968 g/mol.

mol\text{ }F_2=67.3\text{ }g\text{ }F_2*\frac{1\text{ }mol\text{ }F_2}{37.9968\text{ }g\text{ }F_2}=1.77\text{ }mol\text{ }F_2

<em>3.3- Set the equation.</em>

Ideal gas constant: 0.082057 L * atm * K^(-1) * mol^(-1)

PV=nRT

<em>3.4- Plug in the known quantities and solve for P.</em>

(P)(40.6\text{ }L)=(1.77\text{ }mol\text{ }F_2)(0.082057\text{ }L*atm*K^{-1}*mol^{-1})(316.28\text{ }K)

<em>.</em>

P_{F_2}=\frac{(1.77molF_2)(0.082057L*atm*K^{-1}*mol^{-1})(316.28K)}{40.6\text{ }L}P_{F_2}=1.13\text{ }atm

<em>The pressure of F2 is 1.13 atm.</em>

4) The total pressure.

Dalton's law - Partial pressure. This law states that the total pressure of a gas is equal to the sum of the individual partial pressures.

<em>4.1- Set the equation.</em>

P_T=P_A+P_B

4.2- Plug in the known quantities.

P_T=1.57\text{ }atm+1.13\text{ }atmP_T=2.7\text{ }atm

<em>The total pressure in the container is </em>2.7 atm<em>.</em>

You might be interested in
Which compound is most likely to contain ionic bonds? which compound is most likely to contain ionic bonds? mgf2 ch4 n2o?
AnnyKZ [126]
Answer is: MgF₂, magnesium fluoride.
Magnesium fluoride is salt, ionic compound, because magnesium is metal from 2. group of Periodic table of elements and has low ionisation energy and electronegativity, which means it easily lose valence electons, fluorine is nonmetal with greatest electronegativity, which meand it easily gain electron, so magnesium cation (Mg²⁺) and fluorine anion (F⁻) are formed.
6 0
3 years ago
Hello! could anyone help me? i don't really understand. Thank you!! ​
liq [111]

I'm curious on what it is but I wish I could help

7 0
3 years ago
A mixture of gases containing 0.20 mol of SO2 and 0.20 mol of O2 in a 4.0 L flask reacts to form SO3. If the temperature is 25ºC
diamong [38]

Answer : The pressure in the flask after reaction complete is, 2.4 atm

Explanation :

To calculate the pressure in the flask after reaction is complete we are using ideal gas equation.

PV=n_TRT\\\\P=(n_1+n_2)\times \frac{RT}{V}

where,

P = final pressure in the flask = ?

R = gas constant = 0.0821 L.atm/mol.K

T = temperature = 25^oC=273+25=298K

V = volume = 4.0 L

n_1 = moles of SO_2 = 0.20 mol

n_2 = moles of O_2 = 0.20 mol

Now put all the given values in the above expression, we get:

P=(0.20+0.20)mol\times \frac{(0.0821L.atm/mol.K)\times (298K)}{4.0L}

P=2.4atm

Thus, the pressure in the flask after reaction complete is, 2.4 atm

5 0
3 years ago
When most liquids freeze, explain what happens to the motion and the space between the atoms.
KiRa [710]

Answer:

atoms relative motion slow down and begin to vibrate in place

8 0
3 years ago
Is the perceived frequency of a sound wave
ryzh [129]

Answer:

pitch

Explanation:

7 0
4 years ago
Other questions:
  • How many moles of NAHCo3 are present in a 2.oog sample
    14·1 answer
  • Which term means human-made liquid, solid, or sludge waste that may endanger human health or the environment? A. sewage B. hazar
    15·2 answers
  • Pls help me, ill mark brainliest and give 5 stars
    7·2 answers
  • Drag each label to the correct image. Each label can be used more than once.
    14·2 answers
  • Which of the following leads to a higher rate of diffusion?
    10·1 answer
  • Is the following statement sometimes, always or never true: Compounds
    15·1 answer
  • Aqueous hydrobromic acid HBr will react with solid sodium hydroxide NaOH to produce aqueous sodium bromide NaBr and liquid water
    9·1 answer
  • On the periodic table, what is a group? For the main groups, what characteristic
    11·1 answer
  • Give types of salts and one example each<br>​
    5·1 answer
  • There are two groups of waves with the same amplitude. One contains waves of short wavelength and the other has waves of long wa
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!