Answer:Principle of rectilinear propagation of light
Explanation:Principle of rectilinear propagation of light
Rectilinear propagation of light refers to the propensity of light to travel along a straight line without any interference in its trajectory. ... It is because light travels along a straight line and leaves only the areas where the object interferes.
Answer:a) P = Po + rho×h×g
b) P = 5.4 × 10^9 pa
c) F = P/A = (Po + rho×h×g)/A
d) 1.174×10^11N
Explanation: Using the formula
P = Po + rho×h×g
P = 1.0 x 10^5 + 1000 × 5.5 × 9.81
P = 5.4 × 10^9pa
The magnitude of the force exerted by water on the top of the person's head F at the depth h in terms of P
F = P/A = (Po + rho×h×g)/A
Using the above formula
Where A = 0.046m^2
F = P/ A = 5.4×10^9/0.046
F = 1.174×10^11N
Answer:
The velocity of the star is 0.532 c.
Explanation:
Given that,
Wavelength of observer = 525 nm
Wave length of source = 950 nm
We need to calculate the velocity
If the direction is from observer to star.
From Doppler effect

Put the value into the formula







Negative sign shows the star is moving toward the observer.
Hence, The velocity of the star is 0.532 c.
Answer
D. 0.25 meters/second2
Explanation
The average acceleration is the ratio of change in velocity to the change in time of travel.Taking in this case that the change of velocity is a unit, then Average acceleration is given by;
Aacc=Vf-Vi/Tf-Ti
where Vf=final velocity,Vi=initial velocity' Tf=final time, Ti=initial time
Vf-Vi=1m/s
Tf-Ti=4-0=4seconds
Avacc=1/4=0.25m/s2
Answer:
the horizontal distance is 4.355 meters
Explanation:
The computation of the horizontal distance while travelling in the air is shown below:
Data provided in the question is as follows
Velocity = u = 7.70 m/s
H = 1.60 m
R = horizontal direction
Based on the above information
As we know that
R = u × time
where,
Time = 
So,
= 
= 4.355 meters
hence, the horizontal distance is 4.355 meters