Then do the same with one equation. every body attracts every other body with a force that, for any two bodies, is directly proportional to the product of their masses and inversely proportional to the square of the distance separating them. ... If F = G((m1m2)/d and d is smaller, then the force of gravity.
The answer is C. Because Rutherford purposed that negatively charged electrons orbit a positively charged nucleus in orbits with set energy levels.
Answer:
Explanation:
- given S = distance from the first = 3.20cm = 0.032m, t = 1.30×10−8 s
- acceleration = 0.032 X 2 /(1.30×10−8)^2
a = 3.79 x 10^14m/s^2
E = ma /q = 9.11 x 10^-31 x 3.79 x 10^14 / 1.6 x 10^-19
E = magnitude of this electric field. = 2156.3N/C
b) Find the speed of the electron when it strikes the second plate ; V^2 = 2as
= 2 X 3.79 x 10^14 X 0.032
= 4.92 X 10^6m/s
Answer:
the impulse experienced by the passenger is 630.47 kg
Explanation:
Given;
initial velocity of the car, u = 0
final velocity of the car, v = 9.41 m/s
time of motion of the car, t = 4.24 s
mass of the passenger in the car, m = 67 kg
The impulse experienced by the passenger is calculated as;
J = ΔP = mv - mu = m(v - u)
= 67(9.41 - 0)
= 67 x 9.41
= 630.47 kg
Therefore, the impulse experienced by the passenger is 630.47 kg
The answer I believe is c
Explanation
During the day when temperatures are higher, the snow melts and water enters the cracks in the rock. When the temperature drops below 0°C the water in the crack freezes and expands by about 9 per cent. This makes the crack larger.