Answer:
Tarzan will be moving at 7.4 m/s.
Explanation:
From the question given above, the following data were obtained:
Height (h) of cliff = 2.8 m
Initial velocity (u) = 0 m/s
Final velocity (v) =?
NOTE: Acceleration due to gravity (g) = 9.8 m/s²
Finally, we shall determine how fast (i.e final velocity) Tarzan will be moving at the bottom. This can be obtained as follow:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 2.8)
v² = 0 + 54.88
v² = 54.88
Take the square root of both side
v = √54.88
v = 7.4 m/s
Therefore, Tarzan will be moving at 7.4 m/s at the bottom.
Explanation:
The angle of the handle relative to the horizontal is 35°. The angle of the ramp to the horizontal is 7°. So the angle of the handle relative to the ramp is 28°.
cos 28° = 50 / F
F = 50 / cos 28°
F = 56.6 lbs
Convection is the movement<span> of groups of molecules within </span>fluids<span> such as gases and liquids, including molten rock (rheid).</span>
The ball's vertical velocity at the time it just passes over the goal is 0 m/s. Its initial vertical velocity is unknown and we denote it by
, where
here is the ball's initial speed. Vertically, the only force acting on the ball is gravity, which attributes a downward acceleration of 9.8 m/s^2. We expect the maximum height achieved by the ball to be 2.4 m, so we can find the initial speed by solving

