Answer:
The scalar product of a and b is: a · b = |a||b| cosθ
Collaboration in science is important because if only one scientist does an experiment, and gets a result, he/she could have messed. So this is where collaboration comes in. A few other scientists could try the experiment, and if they get the same answers, the result may be proven correct.
Hope this helped!
Answer:
a. t = 1.43 s
b. d = 7.88 m
Explanation:
a. The time of flight can be found using the following equation:

Where:
: is the final height = -10 m
: is the initial height = 0
: is the initial speed in the vertical direction = 0
g: is the acceleration due to gravity = 9.81 m/s²
By solving the above equation for "t" we have:

Hence, the ball will hit the ground in 1.43 s.
b. The distance in the horizontal direction can be found as follows:

Where:
x₀: is the initial position in the horizontal direction = 0
a: is the acceleration in the horizontal direction = 0 (it is moving at constant speed)

Therefore, the ball will travel 7.88 m before it hits the ground.
I hope it helps you!
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.