The answer is 'A', they travel parallel to the direction of motion
Answer:
The pressure and maximum height are
and 161.22 m respectively.
Explanation:
Given that,
Diameter = 3.00 cm
Exit diameter = 9.00 cm
Flow = 40.0 L/s²
We need to calculate the pressure
Using Bernoulli effect

When two point are at same height so ,
....(I)
Firstly we need to calculate the velocity
Using continuity equation
For input velocity,




For output velocity,


Put the value into the formula



(b). We need to calculate the maximum height
Using formula of height

Put the value into the formula



Hence, The pressure and maximum height are
and 161.22 m respectively.
Not only in converting temperatures I think, we always use significant figures every time we want to make some experimental report using the exact data from our experiment. If that isn't experimental report ( some exercise/questions from your textbook) it's not necessary
Answer:
The kinetic energy of the merry-goround after 3.62 s is 544J
Explanation:
Given :
Weight w = 745 N
Radius r = 1.45 m
Force = 56.3 N
To Find:
The kinetic energy of the merry-go round after 3.62 = ?
Solution:
Step 1: Finding the Mass of merry-go-round


m = 76.02 kg
Step 2: Finding the Moment of Inertia of solid cylinder
Moment of Inertia of solid cylinder I =
Substituting the values
Moment of Inertia of solid cylinder I
=>
=> 
=> 
Step 3: Finding the Torque applied T
Torque applied T =
Substituting the values
T = 
T = 81.635 N.m
Step 4: Finding the Angular acceleration
Angular acceleration ,
Substituting the values,


Step 4: Finding the Final angular velocity
Final angular velocity ,
Substituting the values,


Now KE (100% rotational) after 3.62s is:
KE = 
KE =
KE = 544J
Answer:
45°.
It is a property of the parabolas.. When the angle between a parabola and the x-axis is 45° the range is maximum.