The actual weight of the gas = apparent weight + weight.
The actual weight =
+ W
Given that a plastic bag is massed. It is then filled with a gas which is insoluble in water and massed again.
If the apparent weight of the gas is the difference between these two masses, then let the apparent weight = 
The gas is squeezed out of the bag to determine its volume by the displacement of water. Since
density = mass / volume
The density of water is 1000 kg/
we can get the mass of the gas by making m the subject of the formula.
W = mg
The actual weight of the gas = apparent weight + weight
That is,
The actual weight =
+ W
Learn more about density here: brainly.com/question/406690
Answer:
5.7 x 10^12 C
Explanation:
Let the charge on earth and moon is q.
mass of earth, Me = 5.972 x 10^24 kg
mass of moon, Mm = 7.35 x 10^22 kg
Let d be the distance between earth and moon.
the gravitational force between them is

The electrostatic force between them is

According to the question
1 % of Fg = Fe



q = 5.7 x 10^12 C
Thus, the charge on earth and the moon is 5.7 x 10^12 C.
The momentum goes to the wall
Answer:
<em>The force of friction acting on the block has a magnitude of 15 N and acts opposite to the applied force.</em>
Explanation:
<u>Net Force
</u>
The Second Newton's law states that an object acquires acceleration when an unbalanced net force is applied to it.
The acceleration is proportional to the net force and inversely proportional to the mass of the object.
If the object has zero net force, it won't get accelerated and its velocity will remain constant.
The m=2 kg block is being pulled across a horizontal surface by a force of F=15 N and we are told the block moves at a constant velocity. This means the acceleration is zero and therefore the net force is also zero.
Since there is an external force applied to the box, it must have been balanced by the force of friction, thus the force of friction has the same magnitude acting opposite to the applied force.
The force of friction acting on the block has a magnitude of 15 N opposite to the applied force.