Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>
Answer:
The temperature of the metal is 
Explanation:
From the question we are told that
The mass of the metal is 
The specific heat of the metal is 
The mass of the oil is 
The temperature of the oil is 
The specific heat of oil is 
The equilibrium temperature is 
According to the law of energy conservation
Heat lost by metal = heat gained by the oil
So
The quantity of heat lost by the metal is mathematically represented as

=> 
Where
the temperature of metal before immersion
The negative sign show heat lost
The quantity of gained t by the metal is mathematically represented as

=> 
So

substituting values

=> 
Work = force x distance
You can see time doesn’t matter (if we were talking about power, which is the RATE at which work is performed, that would be a different story).
W = 2 x 5 = 10 foot-pounds of work
Foot-pounds are gross units. Better to work in SI units when you can!
Answer:
the image is behind the mirror
virtual
erect(not inverted)
larger than the object