Answer:
a) x₀ = - 2 m , b) y = 4.47 m
Explanation:
A wave travels in the middle with constant speed, let's use the equation of uniform motion
v = d / t
t = d / v
The distance to the first listeners, see attached
d₁ = x₀-x
t = (x₀ +7) / v
The distance to the second listener
d₂ = x - x₀
t = (+ 3- x₀) / v
As the wave arrives at the same time, we can equal the two equations
(x₀ +7) / v = (3 -x₀) / v
x₀ + 7 = 3 - x₀
2 x₀ = 3 - 7
x₀ = -4/2
x₀ = - 2 m
b) The time it takes for the wave to reach the listeners of the x-axis, where the speed of sound is 340 m / s
t = 5/340
t = 0.0147 s
Let's look for the distance the wave travels for the listener axis and
v = d₃ / t
d₃ = v.t
d₃ = 340 * 0.0147
d₃ = 5 m
For the distance component we use the Pythagorean triangle
d₃² = x₀² + y²
y² = d₃² - x₀²
y = √ (d₃² -4)
y = √ (5² -4)
y = 4.47 m
Answer:
Average acceleration is 
Explanation:
It is given that,
Initial velocity, u = 0
Final velocity, v = 6.5 km/s = 6500 m/s
Time taken, t = 60 s
Acceleration, 

Since, 
So, 
So, the angular acceleration of the missile is
. Hence, this is the required solution.
Answer:
a) u = 30.29 m/s
b) t = 2.09 s
Explanation:
given,
velocity = 45 m/s
angle (θ) = 50°
horizontal velocity = 45 cos 50°
time taken to reach 150 m.
times = 
t = 5.19 s
a) height of arrow



s = 46.78 m
v² - u² = 2 g s
u² = 2 × 9.81 × 46.78
u = 30.29 m/s
b) time taken by the apple = 
= 3.09 s
time after which it has to be thrown = 5.19-3.09 = 2.1 s
Answer:

%
%
Explanation:
From the exercise we know two information. The real speed and the experimental measured by the speedometer

Since the speedometer is only accurate to within 0.1km/h the experimental speed is

Knowing that we can calculate Kinetic energy for the real and experimental speed


Now, the potential error in her calculated kinetic energy is:

%
%