Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C
<h2>The distance between students is 2.46 m</h2>
Explanation:
The force of attraction due to Newton's gravitation law is
F = 
Here G is the gravitational constant
m₁ is the mass of one student
m₂ is the mass of second student .
and r is the distance between them
Thus r = 
If we substitute the values in the above equation
r = 
= 2.46 m
Answer:
On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.
Explanation:
add me as brainliest if u the answer is helpful
First, you find the velocity at each component. The general equation is:
a = (v2 - v1)/t
a,x = (v2,x - v1,x)/t
-0.105 = (v2,x - 8.57)/6.67
v2,x = 7.87 m/s
a,y = (v2,y - v1,y)/t
0.101 = (v2,y - -2.61)/6.67
v2,y = -1.94 m/s
To find the final speed, find the resultant velocity by taking the hypotenuse.
v^2 = (v2,x)^2 + (v2,y)^2
v^2 = (7.87)^2 + (-1.94)^2
v = 8.1 m/s
The average velocity of Sandy is given by the total distance covered S divided by the total time taken t:

The total distance covered is

while the total time taken is 2 hours + half an hour (for the rest) + 1 hour and half, so

Therefore, the average velocity is