Answer:
<h2>The angular velocity just after collision is given as</h2><h2>

</h2><h2>At the time of collision the hinge point will exert net external force on it so linear momentum is not conserved</h2>
Explanation:
As per given figure we know that there is no external torque about hinge point on the system of given mass
So here we will have

now we can say

so we will have


Linear momentum of the system is not conserved because at the time of collision the hinge point will exert net external force on the system of mass
So we can use angular momentum conservation about the hinge point
The velocity of B after elastic collision is 3.45m/s
This type of collision is an elastic collision and we can use a formula to solve this problem.
<h3>Elastic Collision</h3>

The data given are;
- m1 = 281kg
- u1 = 2.82m/s
- m2 = 209kg
- u2 = -1.72m/s
- v1 = ?
Let's substitute the values into the equation.

From the calculation above, the final velocity of the car B after elastic collision is 3.45m/s.
Learn more about elastic collision here;
brainly.com/question/7694106
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
<em>It is found, with the positively charge protons in the central nucleus of the atom, while the negatively charges electrons rotate in orbits (Shells) around it.</em>
<em>Electron with a charge of -1</em>
<em>Electron- carries a negative energy </em>