Answer:
= 0.55 m
Explanation:
A standing wave is characterized by anti-nodes and nodes.
Antinodes are points on a standing wave at maximum amplitude, while nodes are points on the standing wave that are stationary and have zero amplitude.
The distance between two adjacent nodes or two adjacent anti-nodes is equivalent to half the wavelength.
Therefore, in this case the half wavelength is 27.5 cm.
Thus, wavelength = 27.5 × 2
= 55 cm
<u>= 0.55 m</u>
A geyser is actually a devise that coverts electrical energy
into heat energy for heating up water. The heating element that is inside the
geyser actually gets heated up and then in turn it heats the water in contact
with it within the geyser. There is also a thermostat device within the geyser
that cuts off the heating when the water temperature reaches the desired level.
This helps in stopping of electrical energy loss. One inlet brings in cold
water while another outlet gets rid of the hot water. When the temperature of
the water falls below the desired level the heating is again started by the
thermostat.
That can only be happening if the mass mysteriously increased somehow. I'd like to know how in the world THAT happened.
Answer:
1. 8437500 N
2. The force between the two charges is attractive.
Explanation:
1. Determination of the force between the two charges.
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
Distance apart (r) = 80 m
Electrical constant (K) = 9×10⁹ Nm²/C²
Force (F) =?
F = Kq₁q₂ / r²
F = 9×10⁹ × 2 × 3 / 80²
F = 5.4×10¹⁰ / 6400
F = 8437500 N
Thus, the force of attraction between the two charges is 8437500 N
2. From the question given, the charges are:
Charge 1 (q₁) = –2.0 C
Charge 2 (q₂) = 3.0 C
We understood that like charges repels while unlike charges attract. Since the two charges (i.e –2 C and 3 C) has opposite signs, it means they will attract each other.
Thus the force between them is attractive.
It is diffraction
Explanation:
The opening is the aperture