Answer:

Explanation:
Given:
mass of first particle, 
mass of second particle, 
mass of third particle, 
coordinate position of first particle in meters, 
coordinate position of second particle in meters, 
coordinate position of third particle in meters, 
<u>Now, gravitational force on particle 3 due to particle 1:</u>



towards positive Y axis.
<u>gravitational force on particle 3 due to particle 2:</u>



towards positive X axis.
<u>Now the net force</u>



<em>For angle in counterclockwise direction from the +x-axis</em>

Answer:
the acceleration required is 1.37m/s^2
Explanation:
The car is having a constant velocity movement, so if we calculate the time to reach 897m, we can use it to find the acceleration the policeman need to apply to reach the car.

the policeman is traveling with a constant acceleration starting from rest so:

The radial velocity method preferentially detects large planets close to the central star
- what is the Radial velocity:
The radial velocity technique is able to detect planets around low-mass stars, such as M-type (red dwarf) stars.
This is due to the fact that low mass stars are more affected by the gravitational tug of planets.
When a planet orbits around a star, the star wobbles a little.
From this, we can determine the mass of the planet and its distance from the star.
hence we can say that,
option D is correct.
The radial velocity method preferentially detects large planets close to the central star
Learn more about radial velocity here:
<u>brainly.com/question/13117597</u>
#SPJ4
APPARENT MOTION- <span>the sensation of seeing movement when nothing actually moves in the environment, as when two neighbouring lights are switched on and off in rapid <span>succession.</span></span>
Answer:
P = 0.25 W
Explanation:
Given that,
The emf of the battry, E = 2 V
The resistance of a bulb, R = 16 ohms
We need to find the power delivered to the bulb. We know that, the formula for the power delivered is given by :

So, 0.25 W power is delivered to the bulb.