Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Vol of sphere = 4/3 pi r^2.density of sphere = mass/volume.mass = densityxvolumesphere 1. mass = density x 4/3 pi 4.5^2sphere 2 5mass = density x 4/3 pi r^25=4/3 pi r^2 divided by 4/3 pi 4.5^25=r^2 divided by 4.5^25x4.5^2=r^2root(5x4.5^2)=r4.5 root 5 = r
<span>ripple factor can be reduced by increasing the value of the load resistor (which means reducing the load of the circuit)</span>
Answer:
Polarization occurs when an electric field distorts the negative cloud of electrons around positive atomic nuclei in a direction opposite the field. Polarization P in its quantitative meaning is the amount of dipole moment p per unit volume V of a polarized material, P = p/V.
Explanation:
Answer:
Resistivity ρ=1.12 x 10^-4 Ωm
Explanation:
ρ= RA/l, where R is resistance, A is cross sectional area and l is length
A=πr^2
Note Current is given R is proportion to temperature and inversely proportional to Current R=(20+273)/14*10^-2 =2000Ω
⇒ρ=R*πr^2/l all length in metre.