Answer:
C) 50 m/s
Explanation:
With the given information we can calculate the acceleration using the force and mass of the box.
Newton's 2nd Law: F = ma
- 5 N = 1 kg * a
- a = 5 m/s²
List out known variables:
- v₀ = 0 m/s
- a = 5 m/s²
- v = ?
- Δx = 250 m
Looking at the constant acceleration kinematic equations, we see that this one contains all four variables:
Substitute known values into the equation and solve for v.
- v² = (0)² + 2(5)(250)
- v² = 2500
- v = 50 m/s
The final velocity of the box is C) 50 m/s.
Answer:
The answer to the question is as follows
The acceleration due to gravity for low for orbit is 9.231 m/s²
Explanation:
The gravitational force is given as

Where
= Gravitational force
G = Gravitational constant = 6.67×10⁻¹¹
m₁ = mEarth = mass of Earth = 6×10²⁴ kg
m₂ = The other mass which is acted upon by
and = 1 kg
rEarth = The distance between the two masses = 6.40 x 10⁶ m
therefore at a height of 400 km above the erth we have
r = 400 + rEarth = 400 + 6.40 x 10⁶ m = 6.80 x 10⁶ m
and
=
= 9.231 N
Therefore the acceleration due to gravity =
/mass
9.231/1 or 9.231 m/s²
Therefore the acceleration due to gravity at 400 kn above the Earth's surface is 9.231 m/s²
Answer:
no the moon does not rotate it only goes in circle just like the sun so I disagree with your friend
Shale, sandstone, and limestone are the most commoc types of sedimentary rocks. They are formed by the most common mineral that is found on or near the surface of the Earth