Answer:
Electric switch is commonly known as the key of an electric circuit.
The answers to your questions are as written below:
- The objects that represents a negatively charged particle is : Image B
- The object that represents a positively charged molecule is : Image A
- The object that represents an uncharged molecule is : Image C
- The object the will not move when in an electric fied is : Image C
<h3>Different types of charges molecules</h3>
A negatively charged molecule move inwards when placed in an electric field while positively charged molecule placed in a electric field will move outwards the electric field.
A neutral/uncharged molecule will remains still when placd in an elctric field due to the absence of charges.
Hence we can concude that the answers to your questions are as listed above.
Learn more about electric charges :brainly.com/question/857179
#SPJ4
attached below is the missing image
Answer:
a. 79.1 N
b. 344 J
c. 344 J
d. 0 J
e. 0 J
Explanation:
a. Since the crate has a constant velocity, its net force must be 0 according to Newton's 1st law. The push force
by the worker must be equal to the friction force
on the crate, which is the product of friction coefficient μ and normal force N:
Let g = 9.81 m/s2

b. The work is done on the crate by this force is the product of its force
and the distance traveled s = 4.35

c. The work is done on the crate by friction force is also the product of friction force and the distance traveled s = 4.35

This work is negative because the friction vector is in the opposite direction with the distance vector
d. As both the normal force and gravity are perpendicular to the distance vector, the work done by those forces is 0. In other words, these forces do not make any work.
e. The total work done on the crate would be sum of the work done by the pushing force and the work done by friction

The force is -12,000 N
Explanation:
First of all, we calculate the acceleration of the ball, by using the following suvat equation:

where:
v = 0 is the final velocity of the baseball (it comes to rest)
u = 40 m/s is the initial velocity
a is the acceleration
s = 2.0 cm = 0.02 m is the displacement of the ball
Solving for a,

Now we can calculate the average force exerted on the ball, by using Newton's second law:

where
m = 300 g = 0.3 kg is the mass of the ball
is the acceleration
Substituting,

where the negative sign indicates that the direction of the force is opposite to the direction of motion of the ball.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Question:
A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Answer:
S = 5.508 × 10¹¹m
V = 2.62 × 10⁸ m/s
Explanation:
The radius of the orbit of Jupiter, Rj is 43.2 light-minutes
radius of the orbit of Mars, Rm is 12.6 light-minutes
Distance travelled S = (Rj - Rm)
= 43.2 - 12.6 = 30.6 light- minutes
= 30.6 × (3 ×10⁸m/s) × 60 s
= 5.508 × 10¹¹m
time = 35mins = (35 × 60 secs)
= 2100 secs
speed = distance/time
V = 5.508 × 10¹¹m / 2100 s
V = 2.62 × 10⁸ m/s