The following
are the answers to the questions presented:
a. The joules of energy required to run a 100W light bulb for one day is 8640000J
b. The amount of coals that has to be burned to light that light bulb for one day is 0.96kg
The solution would
be like this for this specific problem:
<span>P=<span>W/s</span>→W=Pt=100W1day <span><span>24h/</span><span>1day </span></span><span><span>3600s/</span><span>1h</span></span>=8640000J</span>
<span>W=<span>30/100</span>wm→m=<span><span>100W/</span><span>30w</span></span>=<span><span>100×8640000J/</span><span>30×30×<span>10in thepowerof6 </span><span>J/<span>kg</span></span></span></span>=0.96kg</span>
<span>I am hoping that
these answers have satisfied your queries and it will be able to help you in
your endeavors, and if you would like, feel free to ask another question.</span>
Answer:
The Velocity at which it travels, and the Distance from start to finish.
Explanation:
Calculate V*D=T which is Velocity*Distance=Time.
Answer: 45 joules of energy
Explanation:
The answer is Ultraviolet
Answer:
Use the ammeter to measure the current that flows through each wire, because a larger current that flows through the wire corresponds to a smaller resistivity
Explanation:
Since they are connected to a constant voltage power source, the potential difference does not change. The potential difference is proportional to the product of the current and the resistance and, the resistance opposes the flow of electric current. It is clear to see that a large current that flows through the current means there is a lesser resistance to the flow of current at constant potential difference across the circuit.