The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
Answer:he formula for average speed is (total distance/total time)
the y-component does not matter in this problem. so do 6.26(cos45)=4.43m/s to find the x-component velocity which is constant throughout the duration of the flight. the total distance is 2L because he travels distance L twice.
the total time is ((time in water)+(time out of water)) since you dont have time you must eliminate it. to do this you need (distance)/(time)=velocity
solve for time and you get T=D/V
time in water is L/3.52 and time out of water is L/4.43
add them together and you get (4.43L+3.52L)/(15.59) = 7.95L/15.59
that value is your total time
divide you total distance (2L) by total time (7.95L/15.59) and the Ls cancel out and you get
(31.18)/(7.95) = 3.92 m/s = Average Speed
Explanation:
Answer:
The force is the same
Explanation:
The force per meter exerted between two wires carrying a current is given by the formula

where
is the vacuum permeability
is the current in the 1st wire
is the current in the 2nd wire
r is the separation between the wires
In this problem

Substituting, we find the force per unit length on the two wires:

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.
The same conclusion comes out from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).
The energy conservation and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
The energy conservation is one of the most fundamental principles of physics, stable that if there are no friction forces the mechanistic energy remains constant. Mechanical energy is the sum of the kinetic energy plus the potential energies.
Em = K + U
Let's write the energy in two points.
Starting point. Highest part of the oscillation
Em₀ = U = m g h
Final point. Lower part of the movement
= K = ½ m v²
Energy is conserved.
Emo =
m g h = ½ m v²
v² = 2 gh
Let's use trigonometry to find the height, see attached.
h = L - L cos θ
h = L (1- cos θ)
They indicate that the initial angle is tea = 48º and the length is L = 3.7 m, let's calculate.
h = 3.7 (1- cos 48)
h = 1.22 m
this is the maximum height of the movement.
Let's calculate the velocity.
v = 4.89 m / s
In conclusion using the conservation of energy and trigonometry we can find the results for the questions about the movement of the acrobat are;
a) The maximum speed is v = 4.89 m / s
b) The maximum height is h = 1.22 m
Learn more here: brainly.com/question/13010190
The angle through which the grinding wheel rotates in the first second = <u>5300 rad</u>
Angular velocity is, the time charge at which an object rotates, or revolves, about an axis, or at which the angular displacement between our bodies changes. within the discern, this displacement is represented via the angle θ among a line on one body and a line on the alternative.
The angular velocity is described as the charge of trade of the angular position of a rotating body. Linear speed is defined because the charge of change of displacement with respect to time whilst the item moves alongside a straight course.
Initial angular velocity of the grinding wheel = ω1 = 5500 rad/s
Final angular velocity of the grinding wheel = ω2 = 0 rad/s (Comes to rest)
Time is taken by the grinding wheel to come to rest = T = 10 sec
Angular acceleration of the grinding wheel = α
2 = ω1 + αT
0 = 5500 + α(10)
α = - 400 rad/s2
Negative as it is deceleration.
The angle through which the grinding wheel rotates in the first second = θ
Time period = T1 = 1 sec
θ = ω₁T1 + αT1²/2
θ = (5500)(1) + (-400)(1)²/2
θ = 5300 rad
The angle through which the grinding wheel rotates in the first second = <u>5300 rad</u>
Learn more about angular velocity here:-brainly.com/question/6860269
#SPJ4