Answer:
f= 440.4 Hz or f= 439.6 Hz
Explanation:
In this exercise we have two waves with slightly different frequencies, the A4 chord with f = 440 Hz and the beating with the central chord fbeats = 0.40 Hz, let's use the relation
f_{beat} = | f - f₀ |
f = fo + - f _{beat}
f = 440 + 0.4 = 440.4 Hz
f = 440-0.4 = 439.6 Hz
Answer:

Explanation:
mass of bob = M
string is fixed at C, at position A the string is horizontal and at position B teh string is vertical.
Let the length of the string is L.
At the point C, it has maximum potential energy which is equal to
U = M x g x L ..... (1)
At the position B, it has maximum kinetic energy and the velocity is v.
K = 1/2 Mv² ...... (2)
According to the conservation of energy
The potential energy at the position A is equal to the kinetic energy at position B.
M x g x L = 1/2 M x v²
v² = 2 x g x L

<span>50 N
The centripetal force upon an object is expressed as
F = mv^2/r
So let's substitute the known values and calculate
F = mv^2/r
F = 1.0 kg * (5.0 m/s)^2 / 0.5 m
F = 1.0 kg * 25 m^2/s^2 / 0.5 m
F = 25 kg*m^2/s^2 / 0.5 m
F = 50 kg*m/s^2
F = 50 N
So the answer is 50 N which matches one of the available choices.</span>
Answer:
Minimum angular spread (in rad) = 547.45 x 10⁻⁶ rad
Explanation:
GIven;
Wavelength of manganese vapor laser beam = 534 nm = 534 x 10⁻⁹ m
Diameter = 1.19 mm = 1.19 x 10⁻³ m
Find:
Minimum angular spread (in rad)
Computation:
Minimum angular spread (in rad) = 1.22[Wavelength / Diameter]
Minimum angular spread (in rad) = 1.222[(534 x 10⁻⁹) / (1.19 x 10⁻³)]
Minimum angular spread (in rad) = 2[448.73 x 10⁻⁶]
Minimum angular spread (in rad) = 547.45 x 10⁻⁶ rad
Answer:

Given:
Mass (m) = 6 kg
Speed (v) = 4 m/s
To Find:
Kinetic energy (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:



