1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LenKa [72]
3 years ago
12

Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo

rks in the yard.
What does Takumi hope to reduce through his actions?

the likelihood of stochastic effects, such as DNA mutations
the severity of stochastic effects, such as cancer
the severity of non-stochastic effects, such as cancer
the likelihood of non-stochastic effects, such as radiation sickness
Physics
2 answers:
MrRa [10]3 years ago
7 0

Explanation :

Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.

Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.

So, the correct option is (b) "the severity of stochastic effects, such as cancer".

givi [52]3 years ago
5 0

Answer:its A

Explanation:

i took the test

You might be interested in
The SI unit of power is the
fgiga [73]
<span>Power is measured in watts. A watt is the power that it takes to do one joule ofwork in one second. It can be found using the formula <span>P=<span>Wt</span></span>. (In this formula, W stands for "work.")</span><span><span>Large amounts of energy can be measured in kilowatts (<span>1kW=1×<span>103</span>W</span>), megawatts (<span>1MW=1×<span>106</span>W</span>), or gigawatts (<span>1GW=1×<span>109</span>W</span>).</span><span><span> This is helpful</span><span> This is confusing</span></span></span><span>The watt is named James Watt, who invented an older unit of power: the horsepower.</span>
3 0
3 years ago
Read 2 more answers
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
A constant net torque is applied to a rotating object. Which of the following best describes the object's motion? A constant net
ahrayia [7]

Answer:

The object will rotate with constant angular acceleration

Explanation:

According to the Newton's Second Law for Whenever there is more than one torque acting on a rigid body that posses fixed axis, the moment of inertia as well as the angular acceleration is equals or proportional to the summation of the torques. It gives details on the relationship between rotational kinematics and torque as well as moment of inertia. This can be represented by the below equation.

∑iτi=Iα.

.Therefore when constant net torque is applied to object that is rotating, the object will rotate with constant angular acceleration

7 0
3 years ago
Which describes acceleration involving only a change in direction?
Viefleur [7K]
If we consider any system moving with u<span>niform circular motion we can notice that the MAGNITUDE of the accelaration remains constant. However,  there is a change in the direction of the acceleration at every instant of time .

 As the object moves through the circle the acceleration changes its direction always pointing to the center of the circle.</span>
6 0
3 years ago
RP 1 - Specific Heat Capacity GCSE Exam Questions (B.S.G)
Stels [109]

When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.

A sample of 0.50 kg of water boils (reaches 100 °C). After a while, its temperature decreases by 22 °C.

We can calculate the energy transferred to the surroundings from the water in the form of heat (Q) using the following expression.

Q = c \times m \times \Delta T = \frac{4200J}{kg.\° C}  \times 0.50kg \times (-22\° C) \times \frac{1kJ}{1000J} = -46.2 kJ

where,

  • c: specific heat capacity of water
  • m: mass of water
  • ΔT: change in the temperature

When the temperature of 0.50 kg of water decreases by 22 °C, the energy transferred to the surroundings from the water is -46.2 kJ.

Learn more: brainly.com/question/16104165

8 0
2 years ago
Other questions:
  • Consider an old-fashion bicycle with a small wheel of radius 0.17 m and a large wheel of radius 0.92 m. Suppose the rider starts
    9·2 answers
  • Two trains leave the station at the same time, one heading east and the other west. the eastbound train travels at 85 miles per
    14·1 answer
  • When compared to coastal regions, solar energy extends ________ into the water column and concentrations of nutrients are ______
    15·1 answer
  • Which identifies a machine that converts mechanical energy into electrical energy?
    15·1 answer
  • The energy flow per unit time per unit area (S) of an electromagnetic wave has an average value of 440 mW/m2. The maximum value
    7·1 answer
  • A plane flies 470 km east from city A to city B in 45.0 min and then 966 km south from city B to city C in 1.50 h. For the total
    7·1 answer
  • How much force would cause a 120 kg object to decelerate from a rate of 16m/s to 13 m/s in 5 seconds
    7·1 answer
  • Explain the mode of operation of x-ray​
    13·2 answers
  • Define physical quantity​
    10·2 answers
  • Which term is most applicable to a discussion of angular momentum in the context of black holes?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!