Answer:-2.86*10⁻⁴
Explanation: Use the equation change in volume = (change in pressure * original volume) / Bulks Modulus. ΔV = (-Δp*V₀) / B
Plugging in your numbers, you should get ΔV = (-2.29*10⁷*1) / (8*10¹⁰) = -2.86*10⁻⁴
ΔP = P₂-P₁ ----> ΔP = 2.30*10⁷ - 1.00*10⁵ = 2.29*10⁷
Answer:
f = 8 N
Explanation:
Data provided in the question
Radius of the pulley = r = 0.05 m
Moment of inertia = (I) = 0.2 kg.m^{2}
Angular acceleration = ∝ = 2 rad/sec
Based on the above information
As we know that
Torque is


And,
Torque is also


So,
We can say that


0.05f = 0.4
f = 8 N
We simply applied the above formulas
Answer:
Impulse of force = -80 Ns
Explanation:
<u>Given the following data;</u>
Mass = 50kg
Initial velocity = 1.6m/s
Since she glides to a stop, her final velocity equals to zero (0).
Now, we would find the change in velocity.
Substituting into the equation above;
Change in velocity = 0 - 1.6 = 1.6m/s
Substituting into the equation, we have;
<em>Impulse of force = -80 Ns</em>
<em>Therefore, the impulse of the force that stops her is -80 Newton-seconds and it has a negative value because it is working in an opposite direction, thus, bringing her to a stop. </em>
The
sun is a ball of hot gases containing different kinds of elements at different
cores. It has a very high temperature that radiates all throughout the Milky
Way galaxy. The sun has three main parts; photosphere, chromospheres
and corona. The outer core of a star located at the chromospheres contains
mostly of hydrogen. Inside the hydrogen is helium then carbon, oxygen, neon,
magnesium silicon and the inert gas. The photosphere is scattered by the loose electrons in the corona’s plasma.