AH1 = m * c1 * AT1 calculate this for ice (-25C to 0C) AH2 = AHfus(1 mole)=6.01 kJ = 6010 J AH3 = m *c3 * AT3 calculat this for water (0C to 100C) AH4 = AHvap(1mole)=40.67 kJ = 40670 J AH5= m * c5 * AT5 calculate this for steam (100C to 125C)
Sum ---- AH1+AH2+AH3+AH4+AH5
Data m=18g (1mole water)
c1=specific heat ice= 2.09 J/g K c3=specific heat water= 4.18 J/g K c5=specific heat steam= 1.84 J/g K
AT = (Tend - Tinitial) as this is a difference between temperatures it doesn't matter the units Celsius or Kelvin. Kelvin (K)=Celsius (C)+273.15
AT1 = 0C - (-25C)= 25C= 273.15K - 248.15K= 25K AT3= 100C - 0C = 100C= 100K AT5= 125C - 100C= 25C=25K
This dilution problem uses the equation
M
a
V
a
=
M
b
V
b
M
a
= 6.77M - the initial molarity (concentration)
V
a
= 15.00 mL - the initial volume
M
b
= 1.50 M - the desired molarity (concentration)
V
b
= (15.00 + x mL) - the volume of the desired solution
(6.77 M) (15.00 mL) = (1.50 M)(15.00 mL + x )
101.55 M mL= 22.5 M mL + 1.50x M
101.55 M mL - 22.5 M mL = 1.50x M
79.05 M mL = 1.50 M
79.05 M mL / 1.50 M = x
52.7 mL = x
59.7 mL needs to be added to the original 15.00 mL solution in order to dilute it from 6.77 M to 1.50 M.
I hope this was helpful.
I think it’s 5000 because it says that their is over 4,124 valid species of minerals.
Answer:
Because the gravitational force alters
Explanation: