Answer:
a) t = 1.6 s
b) d = 4.9 m
c) v = 16 m/s
d) θ = 79°
Explanation:
time of fall
t = √(2h/g) = √(2(12)/9.8) = 1.5649... s
d = vt = 3.1(1.56) = 4.8512...
vertical velocity vy = at = 9.8(1.56) = 15.336... m/s
v = √(15.336² + 3.1²) = 15.6464... m/s
θ = arctan(15.336/3.1) = 78.5724...°
Max preassure = force / min area
= 3N / 0.1 x 0.05
= 600N/m(squared)
Copy off of the picture below itll help better, its what someone sent me when i asked this question
Answer:
The average velocity has magnitude = 10 km/h , direction: east
Explanation:
In order to find the average velocity of the car we need to know the final and initial positions, and the time that took to get from one to the other.
Notice that since its movement was 60 km straight east and then from there 40 km straight west, the car is positioned at 20 km to the east of its initial departure point. therefore the vector change in position is a vector 20 km in magnitude, and direction towards the east.
Since it took the car a total of 1.33 hours plus 0.67 hours to reach its final position, the total time elapsed is: 1.33 + 0.67 hours = 2 hours.
Then,the velocity vector has magnitude; 20 km / 2 hours = 10 km/hour
As we mentioned above. the direction of the velocity vector is east.
Explanation:
Formula to determine the critical crack is as follows.

= 1,
= 24.1
[/tex]\sigma_{y}[/tex] = 570
and, 
= 427.5
Hence, we will calculate the critical crack length as follows.
a = 
= 
= 
Therefore, largest size is as follows.
Largest size = 2a
= 
= 
Thus, we can conclude that the critical crack length for a through crack contained within the given plate is
.
Answer:
Explanation:
Given
Wavelength of radiation 
We know Energy of wave with wavelength
is given by

where h=Planck's constant
c=velocity of light
=wavelength of wave

Hence the energy of the wave with wavelength 784 m is