Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
Kinetic Energy I’m not 100% shure tho
Answer:
The cathode ray is deflected vertically to the fluorescent screen
Explanation:

Explanation:
It is given that,
Spring constant of the spring, k = 15 N/m
Amplitude of the oscillation, A = 7.5 cm = 0.075 m
Number of oscillations, N = 31
Time, t = 15 s
(a) Let m is the mass of the ball. The frequency of oscillation of the spring is given by :

Total number of oscillation per unit time is called frequency of oscillation. Here, 


m = 0.0895 kg
or
m = 89 g
(b) The maximum speed of the ball that is given by :





Hence, this is the required solution.
Answer:

Explanation:
According to “Newton's second law”
“Force” is “mass” times “acceleration”, or F = m× a. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
Force = mass × acceleration

Given that,
Mass = 5.32 kg


F = 12.7N
Normal force = mg + F sinx,
“m” being the object's "mass",
“g” being the "acceleration of gravity",
“x” being the "angle of the cart"

To find normal force substitute the values in the formula,
Normal force = 5.32 × 9.8 + 12.7 × sin(-28.7)
Normal force = 52.136 + 12.7 × 0.480
Normal force = 52.136 + 6.096
Normal force = 58.232 N
<u>Acceleration of the cart</u>:



