Answer:
T = mg/6
Explanation:
Draw a free body diagram (see attached). There are two tension forces acting upward at the edge of the cylinder, and weight at the center acting downwards.
The center rotates about the point where the cords touch the edge. Sum the torques about that point:
∑τ = Iα
mgr = (1/2 mr² + mr²) α
mgr = 3/2 mr² α
g = 3/2 r α
α = 2g / (3r)
(Notice that you have to use parallel axis theorem to find the moment of inertia of the cylinder about the point on its edge rather than its center.)
Now, sum of the forces in the y direction:
∑F = ma
2T − mg = m (-a)
2T − mg = -ma
Since a = αr:
2T − mg = -mαr
Substituting expression for α:
2T − mg = -m (2g / (3r)) r
2T − mg = -2/3 mg
2T = 1/3 mg
T = 1/6 mg
The tension in each cord is mg/6.
Hexokinase is the correct answer
<span>Humberto builds two circuits using identical components,
and then adds components to each circuit.
Circuit 1:
A series circuit with three lightbulbs.
Then add three more lightbulbs in series.
Circuit 2:
A parallel circuit with three lightbulbs
Then add two more lightbulbs on new branches
in parallel with each original bulb.
After adding the new lightbulbs in Circuit 1:
-- the voltage across each of the original bulbs is less,
-- the current through the whole series circuit is less,
-- the original three bulbs shine dimmer than before, and
-- the total power delivered from the battery is less.
-- The battery lasts longer.
After adding the new lightbulbs in Circuit 2:
</span>-- the voltage across each of the original bulbs is doesn't change,
-- the current through each original bulb doesn't change,
-- the original three bulbs shine just as bright as before,
-- the total currrent drawn by the circuit, and the total current
delivered by the battery, increases, and
-- the total power delivered from the battery increases.
-- The battery runs down sooner.
Answer:
The Meaning of Force
Meaning of Force
Force Types
Drawing Free-Body Diagrams
Meaning of Net Force
A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there
Explanation:
The frequency (f) in hertz (1/s) of the sound waves is the quotient when its speed (S) is divided by the wavelength (n). This is mathematically expressed,
f = S / n ; f = (331 m/s) / (0.6 m) = 551.67 / s
Thus, the frequency of the wave is 551.67 Hz.