B. evaporation
c. condensation
They are opposite processes that involve the same transfer of energy
Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :



h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.
Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
Answer:
Option (b) is correct.
Explanation:
Elastic collision is defined as a collision where the kinetic energy of the system remains same. Both linear momentum and kinetic energy are conserved in case of an elastic collision.
Inelastic collision is defined as a collision where kinetic energy of the system is not conserved whereas the linear momentum is conserved. This loss of kinetic energy may due to the conversion to thermal energy or sound energy or may be due to the deformation of the materials colliding with each other.
As given in the problem, before the collision, total momentum of the system is
and the kinetic energy is
. After the collision, the total momentum of the system is
, but the kinetic energy is reduced to
. So some amount of kinetic energy is lost during the collision.
Therefor the situation describes an inelastic collision (and it could NOT be elastic).
The wave diagramed in blue.