Answer:
If you want help, try showing that diagram and the following statements.
Answer:
Force of kinetic friction, Fk = 6N
Explanation:
Given the following data;
Coefficient of kinetic friction, μ = 0.2
Normal force, Fn=30N
To find the Force of kinetic friction;
Mathematically, the force of kinetic friction is given by the formula;
Fk = μFn
Where;
- Fk represents the force of kinetic friction.
- μ represents the coefficient of friction.
- Fn represents the normal force.
Substituting into the equation, we have;
Fk = 0.2*30
Fk = 6N
Therefore, the force of kinetic friction is 6N.
Object #1 is very large; it has rings and many moons.
It's most likely the outer planet Saturn.
Object #2 is very small; it has no rings and a few moons but not many.
This one is most likely the inner planet Mars.
(3rd choice)
Well other planets have a gravitational pull that's what keep the planet's orbiting the sun. But the amount of gravity differs by mass.
Hope this helps :)
Answer:
The Electric flux will be 
Explanation:
Given
Strength of the Electric Field at a distance of 0.158 m from the point charge is

We know that the flux of the Electric Field can be calculated by using Gauss Law which is given by

Let consider a sphere of radius 0.158 m as Gaussian Surface at a distance of 0.158 m from the point charge and Let
be the flux of the Electric Field coming out\passing through it which is given by

It can be observed that same amount of flux which is passing through the Gaussian sphere of radius 0.158 is also passing through the Gaussian sphere of radius 0.142 m at a distance of 0.142 m from its centre.
Also it can be observed that the charge inside the two Gaussian Sphere mentioned have same value so the Flux of electric field through them will also be same.
So the electric flux through the surface of sphere that has given charge at its centre and that has radius 0.142 m is 