Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds
The watt is a rate, similar to something like speed (miles per hour) and other time-interval related measurements.
Specifically, watt means Joules per Second. We are given that the electrical engine has 400 watts, meaning it can make 400 joules per second. If we need 300 kJ, or 3000 Joules, then we can write an equation to solve the time it would take to reach this amount of joules:
w * t = E
w: Watts
t: Time
E: Energy required
(Watts times time is equal to the energy required)
<u>Input our values:</u>
400 * t = 3000
(We need to write 3000 joules instead of 300 kilojoules, since Watts is in joules per second. It's important to make sure your units are consistent in your equations)
<u>Divide both sides by 400 to isolate t:</u>
<u />
= 
t = 7.5 (s)
<u>It will take 7.5 seconds for the 400 W engine to produce 300 kJ of work.</u>
<u></u>
If you have any questions on how I got to the answer, just ask!
- breezyツ
Answer:
They're typically made up of three main parts: protons, neutrons and electrons. Think of the protons and neutrons as together forming a “sun”, or nucleus, at the centre of the system. The electrons orbit this nucleus, like planets. If atoms are impossibly small, these subatomic particles are even more so.
Explanation:
hope i helped.