Other terrestrial planets have more extreme temperatures mainly because of their atmospheres
Explanation:
for example the atmosphere of Venus is composed mainly of carbon dioxide, this carbon dioxide traps the heat or energy from the sun and makes the planet have higher temperatures. where on mars the atmosphere is very thin so it takes in lots of heat and doesn't keep it in very well so it gets very hot and very cold
<h2>
The balloon is moving when it is halfway down the building at 20.78 m/s.</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 0.5 x 44 = 22 m
Substituting
v² = u² + 2as
v² = 0² + 2 x 9.81 x 22
v² = 431.64
v = 20.78 m/s
Velocity at 22 m = 20.78 m/s
The balloon is moving when it is halfway down the building at 20.78 m/s.
Contact forces has to be touching for it to be an actual force. A field force does not have to be touching but it does have to be acting on particles at different positions in a space.
Formula: s = d/t
s = speed
d = distance
t = time
Solve using the values we are given.
s = 300/40
s = 7.5m/s
Best of Luck!
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.